doi: 10.3969/j.issn.1000-8349.2017.03.04

引力波与引力波源

赵 文¹,张 星¹,刘小金¹,张 杨¹,王运永²,张 帆², 肇宇航²,郭越凡²,陈奕康²,艾舜柯²,朱宗宏²,WANG Xiao-ge^{3,4}, LEBIGOT Eric³,都志辉³,曹军威³,钱 进⁵,殷 聪⁵,王建波⁵, BLAIR David⁶,JU Li⁶, ZHAO Chun-nong⁶, WEN Lin-qing⁶

(1. 中国科学技术大学 天文学系,合肥 230026; 2. 北京师范大学 天文系,北京 100875; 3. 清华大学,北 京 100084; 4. Michigan State University, East Lansing, MI 48821, USA; 5. 中国计量科学研究院,北 京 100013; 6. University of Western Australia, WA 6009, Australia)

摘要: 引力波爆发事件 GW150914 的发现,标志着引力波天文学时代的到来,它为人类打开了 全新的窗口来研究强引力场、极致密天体、极高能过程、极早期宇宙等极端物理过程和现象。介 绍广义相对论中引力波的基本性质、观测效应以及主要的产生机制。并着重介绍宇宙中的几类比 较重要的引力波源的主要性质、探测方法,以及探测现状和未来展望。具体包括:旋转的中子星、 稳定的双星系统等连续的引力波源,超新星爆发、双星并合等爆发式的引力波源,以及天体物理 过程和宇宙暴胀产生的随机引力波背景。

关 键 词: 引力波; 中子星; 致密双星; 超新星; 暴胀 **中图分类号:** P142.9 **文献标识码:** A

1 引 言

爱因斯坦的广义相对论建立 100 年以来,在理论和观测检验方面都取得了长足的进展, 至今为止,仍然是最成功的引力理论。作为其基础的等效原理,其已经为 Eötvös 实验、狭 义相对论等所验证;其理论细节在后牛顿层次上的预言,得到物理实验和天文观测的很好验 证,包括光线偏折、Shapiro 时间延迟、水星近日点进动等^[1]。此外,基于广义相对论和宇宙 学原理的大爆炸宇宙学标准模型,即所谓的 inflation+ΛCDM 模型,近年来取得了巨大的成 功,其基本预言已经被大量的宇宙学观测 (包括宇宙微波背景辐射、宇宙大尺度结构等)所证

收稿日期: 2016-10-24; 修回日期: 2016-12-19

通讯作者:赵文, wzhao7@ustc.edu.cn

资助项目:国家自然科学基金 (11633001, 11603020, 11653002, 11322324, 11173021, 11275187, 11675165, 11653002, 11421303);北京师范大学科学研究基金;中央高校基础研究基金;中国科学院战略先导项目 (XDB09000000, XDB23010200); 973 项目 (2012CB821804, 2014CB845806)

实^[2]。因此,广义相对论已经成为当代天文学和物理学框架中的基本要素。而广义相对论所 涉及到关于时间和空间等最基本的概念始终是物理科学的基础和前沿。

与此同时,作为爱因斯坦构造该理论时的三大要素之一的引力场的波动性质,在理论和 观测方面也取得了长足的发展。人类首次间接发现引力波的迹象是通过观测中子星的轨道变 化。著名的双星 PSR B1913+16 自 1974 年被发现以来,经过几十年连续观测积累,在轨道 周期减小率等主要物理量观测方面验证了此双星辐射出引力波,带走能量和角动量,导致 双星轨道衰减,表现为轨道周期 P 变小。基于广义相对论计算出的四极矩辐射能流理论预 言,与截止到 2010 年的观测数据相比,达到 0.3% 的精度^[3]。尽管如此,该探测也只是对引 力波的间接探测,而其直接探测直到近几年才有所突破。2016 年 2 月 11 日,LIGO 和 Virgo 合作组宣布,他们首次捕捉到双黑洞并合所产生的引力波爆发信号 GW150914^[4]。不久之 后,该工作组又于 2016 年 6 月 15 日宣布,他们发现第二例双星并合产生的引力波爆发事件 GW151226^[5]。2017 年 5 月 31 日,LIGO 和 Virgo 科学合作组举办了一次内部媒体发布会, 宣布在高级 LIGO 探测器上探测到第三个引力波事例 GW170104。与前两个事例一样,它也 是由两个相互旋绕的黑洞并合时产生的。这些成就的取得标志着引力波天文学这门新的学科 的建立。

与电磁波类似,引力波的产生波源也是多样的,不同的波源产生的引力波的频率和振幅千差万别。因此针对不同频段的引力波,人们采用了不同的方法来探测。目前,国际上主流的探测方法主要有三种(见图1):第一种是激光干涉仪引力波探测器,包括地面的AdvLIGO,AdvVirgo等,以及空间的eLISA等,该类探测器主要敏感的是频率比较高(10⁻⁴~10⁴ Hz)的引力波。这一类引力波的波源非常多,包括双中子星、双黑洞的并合、超新星爆发、中子星自转、双白矮星的绕转、超大质量双黑洞的并合等。第二种是脉冲星计时阵列,通过监测和分析毫秒脉冲星的计时残差来提取引力波信号,目前国际上正在运行的包括澳大利亚的PPTA,欧洲的EPTA,北美的NANOGrav,以及结合三者形成的IPTA。这种探测方法主要敏感的是中等频段(10⁻⁹~10⁻⁷ Hz)的孤立引力波信号和随机引力波背景,已知的引力波源主要包括三类,分别是宇宙中超大质量双黑洞的引力辐射、宇宙弦的引力波 辐射和原初引力波。第三种是宇宙微波背景辐射,人们通过分析宇宙微波背景辐射中的B模式偏振来提出极低频(10⁻¹⁸~10⁻¹⁵ Hz)的引力波信号,主要是宇宙爆胀时期产生的原初引力波。目前,国际上做得最好的是BICEP2和Keck Array的宇宙微波背景辐射望远镜。虽然后面两种方法至今仍没有探测到确定的引力波信号,但是人们普遍认为其探测灵敏度已经非常接近理论预言的要求,因此,相信在未来数年内,这两种探测方法也将取得突破。

按照广义相对论,引力波产生于许多天体物理和宇宙学过程中。剧烈的天体物理过程可 以辐射出引力波,例如双致密星绕转、黑洞的吸积、超新星爆发、中子星振动等,都会辐射 出引力波,带走能量、动量和角动量,这又会反过来影响这些天体的演化过程。在膨胀宇宙 的极早期,如暴胀过程,时空度规的原初扰动除了标量型的密度扰动、矢量型的旋转扰动, 还包括了张量型部分,即引力波。随着宇宙的膨胀,矢量型部分衰减,标量型扰动构成宇宙 大尺度结构的种子,而张量型扰动残留下来成为原初的残余引力波。由于引力作用微弱,宇 宙对于引力波几乎始终是透明的,相对于电磁波来说,引力波携带了更加干净的天体物理和

图 1 各种引力波源所辐射的引力波的频率和主要的探测方法

宇宙学信息。因此,引力波研究和探测对于天体物理、宇宙学都有极为重要的意义。在本文中,我们将简要介绍宇宙中的几类主要引力波源,介绍他们辐射的引力波的主要性质,探测方法和目前的探测现状,具体包括连续的引力波源(旋转的中子星、稳定的双星系统),爆发式的引力波源(超新星爆发、双星并合),随机引力波背景(天体物理的引力波背景、原初引力波)。

在本文中, *G* 表示牛顿引力常数,为了使公式表示简洁而又不失物理意义,我们采用自然单位制,即取光速 *c* = 1。

2 广义相对论中的引力波及其观测效应

2.1 引力波的传播

在广义相对论中,四维时空的度规用 $g_{\mu\nu}$ 来表示,即: $d\tau^2 = -g_{\mu\nu}dx^{\mu}dx^{\nu}$ 。在弯曲时空中,自由粒子走测地线,即其运动轨迹满足测地线方程^[6]:

$$\frac{\mathrm{d}^2 \boldsymbol{x}^{\mu}}{\mathrm{d}\boldsymbol{\tau}^2} + \boldsymbol{\Gamma}^{\mu}_{\alpha\beta} \frac{\mathrm{d}\boldsymbol{x}^{\alpha}}{\mathrm{d}\boldsymbol{\tau}} \frac{\mathrm{d}\boldsymbol{x}^{\beta}}{\mathrm{d}\boldsymbol{\tau}} = 0 \quad , \tag{1}$$

其中, $\Gamma^{\mu}_{\alpha\beta}$ 是克利斯朵夫联络。时空的弯曲程度由物质的能量–动量张量 $T_{\mu\nu}$ 决定,联系两者的是爱因斯坦场方程:

$$\boldsymbol{R}_{\mu\nu} - \frac{1}{2}\boldsymbol{g}_{\mu\nu}R = 8\pi G \boldsymbol{T}_{\mu\nu} \quad , \tag{2}$$

其中, $\mathbf{R}_{\mu\nu}$ 是 Ricci 张量, 而 R 是 Ricci 标量, 他们都是度规 $g_{\mu\nu}$ 的函数。这里我们没有考虑宇宙学常数项。看上去, 对称的度规张量有 10 个自由分量, 但是由于 Bianchi 恒等式的存在, 其中只有 6 个分量是真正独立的, 其余的 4 个分量则是规范自由度。在广义相对论中,

我们通常采用谐和规范来限制这4个规范自由度:

$$(\sqrt{-g}\boldsymbol{g}^{\alpha\beta})_{,\beta} = 0 \quad , \tag{3}$$

其中, g 是度规 $g_{\alpha\beta}$ 的行列式, $g^{\alpha\beta}$ 是度规矩阵的逆矩阵。

通常我们可以将上述场方程改写为 Landau-Lifshitz 形式。定义张量密度 (gothic inverse metric)^[7]:

$$\mathbf{g}^{\alpha\beta} \equiv \sqrt{-g} \mathbf{g}^{\alpha\beta} \ , \quad \mathbf{H}^{\alpha\mu\beta\nu} \equiv \mathbf{g}^{\alpha\beta} \mathbf{g}^{\mu\nu} - \mathbf{g}^{\alpha\nu} \mathbf{g}^{\beta\mu} \ . \tag{4}$$

因此,爱因斯坦场方程可以改写为如下形式:

$$\boldsymbol{H}^{\alpha\mu\beta\nu}_{,\mu\nu} = 16\pi G(-g)(\boldsymbol{T}^{\alpha\beta} + \boldsymbol{t}^{\alpha\beta}_{\rm LL}) \quad , \tag{5}$$

其中, $t_{LL}^{\alpha\beta}$ 是 Landau-Lifshitz 赝张量,其定义为

$$(-g)\boldsymbol{t}_{\mathrm{LL}}^{\alpha\beta} \equiv \frac{1}{16\pi G} \left\{ \boldsymbol{g}_{,\lambda}^{\alpha\beta} \boldsymbol{g}_{,\mu}^{\lambda\mu} - \boldsymbol{g}_{,\lambda}^{\alpha\lambda} \boldsymbol{g}_{,\mu}^{\beta\mu} + \frac{1}{2} \boldsymbol{g}^{\alpha\beta} \boldsymbol{g}_{\lambda\mu} \boldsymbol{g}_{,\rho}^{\lambda\nu} \boldsymbol{g}_{,\nu}^{\mu\rho} - \boldsymbol{g}^{\alpha\lambda} \boldsymbol{g}_{\mu\nu} \boldsymbol{g}_{,\rho}^{\alpha\nu} \boldsymbol{g}_{,\mu}^{\mu\rho} + \boldsymbol{g}_{\lambda\mu} \boldsymbol{g}^{\nu\rho} \boldsymbol{g}_{,\nu}^{\alpha\lambda} \boldsymbol{g}_{,\rho}^{\beta\mu} + \frac{1}{8} (2\boldsymbol{g}^{\alpha\lambda} \boldsymbol{g}^{\beta\mu} - \boldsymbol{g}^{\alpha\beta} \boldsymbol{g}^{\lambda\mu}) (2\boldsymbol{g}_{\nu\rho} \boldsymbol{g}_{\sigma\tau} - \boldsymbol{g}_{\rho\sigma} \boldsymbol{g}_{\nu\tau}) \boldsymbol{g}_{,\lambda}^{\nu\tau} \boldsymbol{g}_{,\mu}^{\rho\sigma} \right\} .$$

$$(6)$$

我们可以进一步定义 $\hat{h}^{lphaeta} \equiv \eta^{lphaeta} - \mathfrak{g}^{lphaeta}$,则谐和规范条件可以改写为:

$$\widehat{\boldsymbol{h}}^{\alpha\beta}_{\ ,\beta} = 0 \quad , \tag{7}$$

而场方程可以写为:

$$\boldsymbol{\eta}^{\mu\nu} \hat{\boldsymbol{h}}^{\alpha\beta}_{,\mu\nu} = -16\pi G (\boldsymbol{T}^{\alpha\beta} + \boldsymbol{t}^{\alpha\beta}_{\rm LL} + \boldsymbol{t}^{\alpha\beta}_{\rm H}) \quad , \tag{8}$$

 $\ddagger \psi (-g) \boldsymbol{t}_{\mathrm{H}}^{\alpha\beta} = (\widehat{\boldsymbol{h}}_{,\mu}^{\alpha\nu} \widehat{\boldsymbol{h}}_{,\nu}^{\beta\mu} - \widehat{\boldsymbol{h}}^{\mu\nu} \widehat{\boldsymbol{h}}_{,\mu\nu}^{\alpha\beta}) / 16\pi G_{\circ}$

讨论引力波时,我们采用弱场近似,即 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$,其中 $|h_{\mu\nu}| \ll 1$ 。考虑到 $h_{\mu\nu}$ 的线性近似,可以得到:

$$\hat{\boldsymbol{h}}_{\mu\nu} \equiv \boldsymbol{h}_{\mu\nu} - (1/2)\boldsymbol{\eta}_{\mu\nu}\boldsymbol{h} \quad , \tag{9}$$

其中, $h = \eta^{\mu\nu} h_{\mu\nu}$ 。而线性近似下的 Einstein 场方程可以简化为:

$$\widehat{\boldsymbol{h}}_{\mu\nu,\alpha}^{\ ,\alpha} = -16\pi G \boldsymbol{T}_{\mu\nu} \quad . \tag{10}$$

这里我们讨论真空中传播的引力波,即 $T_{\mu\nu} = 0$,所以引力波传播方程是标准的无质量粒子 波动方程 $\hat{h}_{\mu\nu,\alpha} = 0$ 。对于单色波,其解为:

$$\widehat{\boldsymbol{h}}_{\mu\nu} = \boldsymbol{C}_{\mu\nu} \exp(\mathrm{i}\boldsymbol{k}_{\sigma}\boldsymbol{x}^{\sigma}) \quad , \tag{11}$$

这里 $C_{\mu\nu}$ 表示引力波的振幅, $\mathbf{k}^{\sigma} \equiv (\omega, \mathbf{k})$ 是四维波矢, 满足 $\mathbf{k}^{\sigma}\mathbf{k}_{\sigma} = 0$ 。对称矩阵 $C_{\mu\nu}$ 有 10 个分量, 但是考虑到谐和规范条件 (见式 (7)), 只有 6 个分量是独立的。同时我们注意到

在坐标变换 $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$ 下,爱因斯坦场方程是不变的,如果 ξ^{μ} 同时还满足谐和条件,即 $\xi^{\mu;\alpha}_{,\alpha} = 0$ (它的解为 $\xi_{\mu} = B_{\mu} \exp(ik_{\sigma}x^{\sigma})$),则坐标变换后的 $\hat{h}_{\mu\nu}$ 同时也满足谐和规范条件,所 以 $\hat{h}_{\mu\nu}$ 的剩余 6 个独立分量中仍有 4 个是规范自由度。为了固定该坐标变换所带来的自由 度,我们通常采用所谓的横向无迹规范 (transverse-traceless gauge),通常也称 TT 规范,该 规范要求:

$$C_{0\mu} = 0$$
, $C_{i}^{i} = 0$, $k^{i}C_{ij} = 0$. (12)

式 (12) 给出了 8 个规范约束,这样 $\hat{h}_{\mu\nu}$ 的 10 个分量中真正独立的只有 2 个,即广义相对论 中的引力波只有两个极化分量。以沿 z 轴方向传播的引力波为例,在 TT 规范下, $h_{\mu\nu}$ 的两 个非零分量分别为 $h_{11} = -h_{22}$ 和 $h_{12} = h_{21}$,前者我们称为引力波的"+"极化分量,后者 为"×"极化分量。这里很容易发现,引力波是横波,并且以光速传播。根据其在坐标系旋 转下的变换行为,我们容易发现引力波的自旋为 2。

对于非 TT 规范下的引力波 $\hat{h}_{\mu\nu}$,我们也可以利用下面的变换,将其变换为 TT 规范下 对应量 $\hat{h}_{\mu\nu}^{\text{TT}}$,

$$\widehat{\boldsymbol{h}}_{ij}^{\mathrm{TT}} = \boldsymbol{\Lambda}_{ij,kl}(\widehat{\boldsymbol{k}})\widehat{\boldsymbol{h}}_{kl} \quad , \tag{13}$$

其中, \hat{k} 为引力波传播的方向矢量,变换矩阵为 $\Lambda_{ij,kl}(\hat{k}) = P_{ik}P_{jl} - (1/2)P_{ij}P_{kl}$,这里矩阵 P 的定义为 $P_{ij}(\hat{k}) = \delta_{ij} - \hat{k}_i \hat{k}_j$, 是一个投影算符。可以证明 (空间) 张量 $\Lambda_{ij,kl}$ 满足下列恒 等式:

$$\boldsymbol{\Lambda}_{ii,kl} = 0 \ , \quad \boldsymbol{k}^{i} \boldsymbol{\Lambda}_{ij,kl} = 0 \ , \tag{14}$$

这些关系正好对应于 TT 规范条件,见式 (12)。

2.2 引力波的观测效应

为了描述引力波的观测效应,我们研究两个相邻自由粒子在弯曲时空中的相对运动时所 满足的测地线偏离方程。这里我们考虑邻近的两个粒子,其坐标差为 $S^{\mu} \equiv \delta x^{\mu}$,我们将一个 粒子放在坐标原点,根据测地线方程可知,它在原点保持静止。另一粒子放于 S^{μ} 处,其四 维速度为 $U^{\mu} = (1,0,0,0)$ 。偏离量 S^{μ} 所满足的方程为^[6]:

$$\frac{D^2 S^{\mu}}{D\tau^2} = R^{\mu}_{\ \nu\rho\sigma} U^{\nu} U^{\rho} S^{\sigma} \quad .$$
(15)

我们考虑 TT 规范下的引力波场,在线性近似下,上述方程简化为:

$$\frac{\partial^2 \mathbf{S}^{\mu}}{\partial t^2} = \frac{1}{2} \mathbf{S}^{\sigma} \frac{\partial^2 \mathbf{h}^{\mu}_{\sigma}}{\partial t^2} \quad . \tag{16}$$

考虑沿 z 轴方向传播的引力波,我们知道它有两个独立的极化分量。首先考虑"+"极化的观测效应,此时 $h_{11} = -h_{22} = C_+ \exp(i k_\sigma x^\sigma)$,因此测地线偏离方程的解为:

$$S^{1}(t) = \left(1 + \frac{C_{+}}{2} e^{i\omega t}\right) S^{1}_{0} , \quad S^{2}(t) = \left(1 - \frac{C_{+}}{2} e^{i\omega t}\right) S^{2}_{0} , \quad S^{3}(t) = S^{3}_{0} , \quad (17)$$

这里 $S_0^i \equiv S^i(t = t_0)$ 。可见在沿 z 方程传播的"+"极化引力波的作用下,自由粒子在 x - y 平面内振荡,且 x 和 y 方向的振荡相位正好相差 180°;振荡的振幅在两个方向上是一致的,

均由引力波的振幅决定。这是引力波观测效应的基本特征,因此对于引力波探测,一般需要 相互垂直的两个探测臂,才能捕捉到引力波这种特征的振荡信号。

如果考虑"×"极化的观测效应,我们有 $h_{12} = h_{21} = C_{\times} \exp(i \mathbf{k}_{\sigma} \mathbf{x}^{\sigma})$,因此测地线偏离 方程的解为:

$$S^{1}(t) = S_{0}^{1} + \frac{C_{\times}}{2} e^{i\omega t} S_{0}^{2} , \quad S^{2}(t) = S_{0}^{2} + \frac{C_{\times}}{2} e^{i\omega t} S_{0}^{1} , \quad S^{3}(t) = S_{0}^{3} .$$
 (18)

这里我们作一坐标变换 $x^1 \to \tilde{x}^1 = (x^2 + x^1)/\sqrt{2}$, $x^2 \to \tilde{x}^2 = (x^2 - x^1)/\sqrt{2}$, $x^3 \to \tilde{x}^3 = x^3$, 即将 (x^1, x^2, x^3) 沿 x^3 轴逆时针转动 45°。则在新坐标系下,我们有:

$$\tilde{S}^{1}(t) = (1 + \frac{C_{\times}}{2} e^{i\omega t}) \tilde{S}^{1}_{0} , \quad \tilde{S}^{2}(t) = (1 - \frac{C_{\times}}{2} e^{i\omega t}) \tilde{S}^{2}_{0} , \quad \tilde{S}^{3}(t) = \tilde{S}^{3}_{0} .$$
(19)

这样我们发现,"×"极化引力波的观测效应和"+"极化引力波一样,其差别仅仅在于振荡 方向相差 45°角,见图 2。

图 2 a) 表示在沿 *z* 方向传播的 "+"极化引力波通过时粒子相对位置的偏离情况; b) 表示 "×"极化引力波的效应^[8]

3 引力波源

本章中我们主要讨论两种引力波的产生机制: (1) 孤立的引力波源,例如中子星或者黑 洞系统,由于其自身的分布及其运动所导致的引力辐射; (2) 宇宙学中的引力辐射,其主要 机制在于弯曲时空中真空态的定义不唯一。假设宇宙在初始状态处于引力子的真空态,那么 随着宇宙的膨胀,该真空态自然对应一个引力子的多粒子态,即引力子会随着宇宙的膨胀 自动从真空中产生,从而形成引力波背景,即我们通常所说的宇宙原初引力波 (primordial gravitational waves),或宇宙残余引力波 (relic gravitational waves)。这是弯曲时空量子场论 的一个基本性质。

3.1 孤立源的引力辐射:四极辐射

我们首先讨论孤立引力波源的引力辐射。众所周知,相对于电磁力来说,引力非常弱, 因此要产生比较强的引力波,一般需要非常致密,质量非常大的源。目前,已知的这种源只 有宇宙中的致密星体,包括中子星、白矮星、黑洞等,以及一些非常剧烈的天体爆发,例如 超新星爆发等。因此引力波物理天生就是一门引力波天文学,而不可能是实验室科学。由于 这些天体距离我们都非常遥远,并且一般都是相对孤立的系统;因此本节我们讨论的引力波 源满足以下三个条件:孤立的,远离观测者的,低速运动的。在这些条件下,我们求解引力 波所满足的式 (10),其解为典型的推迟解:

$$\widehat{\boldsymbol{h}}_{\mu\nu}(t,\boldsymbol{x}) = 4G \int \frac{1}{|\boldsymbol{x}-\boldsymbol{y}|} \boldsymbol{T}_{\mu\nu}(t_r,\boldsymbol{y}) \mathrm{d}^3 \boldsymbol{y} \quad , \tag{20}$$

其中, $t_r \equiv t - |\mathbf{x} - \mathbf{y}|$ 是推迟时间。其相应的 Fourier 变换量的表达式为:

$$\tilde{\hat{\boldsymbol{h}}}_{\mu\nu}(\omega,\boldsymbol{x}) = 4G \int e^{i\omega|\boldsymbol{x}-\boldsymbol{y}|} \frac{\tilde{\boldsymbol{T}}_{\mu\nu}(\omega,\boldsymbol{y})}{|\boldsymbol{x}-\boldsymbol{y}|} d^3 \boldsymbol{y} \quad .$$
(21)

假设源距离观测者为 R, 而源的典型尺度为 ΔR , 并且 $\Delta R \ll R$ 。所以式 (21) 可以简化为:

$$\tilde{\hat{\boldsymbol{h}}}_{\mu\nu}(\omega) = 4G \frac{\mathrm{e}^{\mathrm{i}\omega R}}{R} \int \tilde{\boldsymbol{T}}_{\mu\nu}(\omega, \boldsymbol{y}) \mathrm{d}^{3} \boldsymbol{y} \quad .$$
(22)

利用孤立源条件,上式可以简化为:

$$\tilde{\hat{h}}_{ij}(\omega) = -\frac{2}{3}G\omega^2 \frac{\mathrm{e}^{\mathrm{i}\omega R}}{R} \tilde{q}_{ij}(\omega) \quad , \qquad (23)$$

以及

$$\widehat{\boldsymbol{h}}_{ij}(t) = \frac{2G}{3R} \ddot{\boldsymbol{q}}_{ij}(t_r) \quad , \tag{24}$$

其中我们定义了四极矩

$$\boldsymbol{q}_{ij}(t) \equiv 3 \int y^i y^j T^{00}(t, \boldsymbol{y}) \mathrm{d}^3 y \ , \quad \tilde{\boldsymbol{q}}_{ij}(\omega) \equiv 3 \int y^i y^j \tilde{T}^{00}(\omega, \boldsymbol{y}) \mathrm{d}^3 y \ . \tag{25}$$

由此可见,引力辐射是典型的四极辐射。产生引力波的最低要求是必须有质量四极矩的加速度,这是引力辐射与电磁辐射的根本区别之一。由于一般体系的偶极矩远远大于其四极矩,因此引力辐射比电磁辐射更弱。利用式 (13),我们可以得到 TT 规范下的引力辐射表达式。将坐标原点建立在辐射源的质心,则在各个方向的引力波大小为:

$$h_{+}(t,\theta,\phi) = \frac{G}{3R} [\ddot{q}_{11}(\cos^{2}\phi - \sin^{2}\phi\cos^{2}\theta) + \ddot{q}_{22}(\sin^{2}\phi - \cos^{2}\phi\cos^{2}\theta) - \\ \ddot{q}_{33}\sin^{2}\theta - \ddot{q}_{12}\sin 3\phi(1 + \cos^{2}\theta) + \\ \ddot{q}_{13}\sin\phi\sin 2\theta + \ddot{q}_{23}\cos\phi\sin 2\theta]_{t_{r}} , \qquad (26)$$
$$h_{\times}(t,\theta,\phi) = \frac{G}{3R} [(\ddot{q}_{11} - \ddot{q}_{22})\sin 2\phi\cos\theta + 2\ddot{q}_{12}\cos 2\phi\cos\theta - \\ 2\ddot{q}_{13}\cos\phi\sin\theta + 2\ddot{q}_{23}\sin\phi\sin\theta]_{t_{r}} . \qquad (27)$$

因此对于一个辐射系统,只要求出其四极矩张量,就可以得到其引力辐射的大小。

跟电磁波一样,引力波之所以是一种物质,是因为引力波具有能量和动量。在广义相对 论中,引力波的能量--动量张量 *t*_{uv} 为:

$$\boldsymbol{t}_{\mu\nu} = \boldsymbol{\eta}_{\mu\alpha} \boldsymbol{\eta}_{\nu\beta} (\boldsymbol{t}_{\mathrm{LL}}^{\alpha\beta} + \boldsymbol{t}_{\mathrm{H}}^{\alpha\beta}) \quad . \tag{28}$$

在弱场近似下,只考虑最低阶近似,它可以写为如下形式:

$$\langle \boldsymbol{t}_{\mu\nu} \rangle = \frac{1}{32\pi G} \langle \widehat{\boldsymbol{h}}_{\alpha\beta,\mu} \widehat{\boldsymbol{h}}_{,\nu}^{\alpha\beta} - \frac{1}{2} \widehat{\boldsymbol{h}}_{,\mu} \widehat{\boldsymbol{h}}_{,\nu} - \widehat{\boldsymbol{h}}_{,\beta}^{\alpha\beta} \widehat{\boldsymbol{h}}_{\alpha\mu,\nu} - \widehat{\boldsymbol{h}}_{,\beta}^{\alpha\beta} \widehat{\boldsymbol{h}}_{\alpha\nu,\mu} \rangle \quad , \tag{29}$$

式中, 〈···〉表示在远大于引力波波长的范围内取平均。在 TT 规范下, 上式可以简化为如下 形式:

$$\langle \boldsymbol{t}_{\mu\nu} \rangle = \frac{1}{32\pi G} \langle \hat{\boldsymbol{h}}_{\alpha\beta,\mu}^{\mathrm{TT}} \hat{\boldsymbol{h}}_{,\nu}^{\alpha\beta \mathrm{TT}} \rangle \quad .$$
(30)

根据其能动张量,我们可以定义引力辐射的能流,即辐射功率 $P = -dE_{gw}/dt$ 。利用能 动张量所满足的守恒律 $t_{\mu\nu}^{\mu\nu} = 0$,我们可以得到

$$P = \int_{s} \langle t^{i0} \rangle n_i \mathrm{d}s \quad , \tag{31}$$

其中 *s* 为二维曲面, *n_i* 为该曲面的单位法向量。对于我们前面讨论的孤立的、远离观测者的、低速运动的引力辐射系统,考虑围绕辐射源的二维球面,则辐射功率可以写为:

$$P = \frac{G}{45} \left\langle \frac{\mathrm{d}^3 \mathbf{Q}_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 \mathbf{Q}^{ij}}{\mathrm{d}t^3} \right\rangle_{t_r} \quad , \tag{32}$$

其中 $Q_{ij} \equiv q_{ij} - \delta_{ij}\delta_{kl}q_{kl}$, 是四极矩 q_{ij} 的无迹部分。

通常天体物理过程中辐射的引力波都非常小,例如对于一互相沿圆轨道绕其质心运动的 双星系统,假设其双星的质量分别为 1.4 M_{\odot} ,系统距离地球 20 光年,绕转周期为 7.8 h,则 其辐射的引力波大小为 $h = 4.6 \times 10^{-20}$,而其辐射功率也仅为 $P = 6.2 \times 10^{23}$ W。可见,即 使是对于这种宇宙中非常剧烈的引力波辐射源,其引力辐射也是极微弱的。所以,对引力波 的探测通常极其困难。

3.2 连续的引力波源

如果一个引力辐射系统能够在较长时间内 (相对观测时间而言) 持续辐射较为稳定的引力 波信号 (包括引力波振幅和频率),我们一般称之为连续的引力波源。这类引力波源一般都是 一些旋转的系统,其旋转周期都比较稳定,这直接决定了其辐射的引力波的频率。首先我们 考察,是否可以在地球上的实验室中设计出这种引力波源,使得其引力波振幅较大。考虑一 种哑铃结构的辐射源,假设每个哑铃重为1000 kg,哑铃臂长为1m,让该哑铃绕其质心以 1000 Hz 的频率高速旋转。通过计算很容易发现,该系统作为一个标准的四极辐射系统,是 一种理想的引力波源。其辐射的引力波频率为2000 Hz,假设观测者在距离该源 300 m 的距 离做观测,则容易得到其引力波的振幅为 $h \approx 10^{-39}$,这远远低于我们目前的引力波探测器 的灵敏度,至少在现阶段是不可探测的。因此,目前阶段,可观测的引力波源全部来自于天 体系统。在本节中,我们主要介绍两类比较常见的波源:旋转的中子星系统和稳定的双星系 统。

323

3.2.1 旋转的中子星

中子星是超新星爆发的遗留天体,其质量与太阳质量相当,半径约为10km左右,靠 中子简并压与引力达到平衡,是宇宙中最致密的天体之一。中子星绕其自转轴高速旋转,而 其电磁信号扫过地球时,人们可以接收到规则的脉冲信号,因此中子星通常表现为脉冲星。 当中子星关于旋转轴不对称时,其四极矩会随时间变化,可以产生比较强的引力辐射。对于 一个给定的旋转中子星,其最强的引力波频率是中子星自转频率的两倍,对于地面激光干涉 仪引力波天文台(如LIGO,Virgo等),一类可观测的引力波来自于旋转比较快的中子星,其 自转周期一般为毫秒的量级。一般来说,这种类型的中子星包括两类:一类是年轻的中子星 (包括 Crab 脉冲星、Vela 脉冲星等),这一类脉冲星还没有来得及自转减速;另一类是年老 的毫秒脉冲星,他们一般产生于双星系统,由于吸积其伴星的物质导致其自转加速而形成。

对于高速旋转的非轴对称中子星,根据四极辐射公式,我们可以得到其辐射的引力波振幅为^[9]:

$$h \simeq 4.2 \times 10^{-26} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{I_3}{10^{38} \text{ kg} \cdot \text{m}^2}\right) \left(\frac{1 \text{ kpc}}{r}\right) \left(\frac{f}{100 \text{ Hz}}\right)^2 \quad , \tag{33}$$

其中, r 是中子星到地球的距离; I_3 是惯性张量沿转轴方向的分量, 对于一般的中子星模型, 其典型值约为 10³⁸ kg·m² 左右; f 为引力波的频率, 它是中子星的自转频率的两倍, 在 LIGO 等的敏感范围之内, 一般为几百赫兹的量级; $\epsilon \equiv (I_1 - I_2)/I_3$ 为中子星在垂直转轴方向的椭率。中子星椭率的形成机制目前还没有一致的看法, 但是一些理论认为其最大值可以达到 10⁻⁵ 的量级^[10, 11]。由于引力波具有能量和动量, 因此中子星由于其引力辐射而损失转动能量和角动量, 可以导致自转减慢, 这导致其辐射的引力波频率也会发生变化, 其变化率为^[9]:

$$\dot{f}_{\rm gw} = -\frac{32\pi^4}{5}GI_3 f^5 \epsilon^2 \quad , \tag{34}$$

即,如果中子星的自转减慢是由引力辐射主导的,则其转动频率的变化率应该与其频率的5次方成正比。但是实际观测却发现,脉冲星的制动指数一般为2~3左右,这就表明引力辐射并非脉冲星自转减慢的主要原因。

通过分析 LIGO 第六期的科学运行数据 (S6) 和 VIRGO 第二期和第四期的科学运行数据 (VSR2 和 VSR4),针对己知的 7 颗主要的年轻脉冲星,以及其他的 172 颗自转频率超过 10 Hz 的脉冲星 (包括年轻的脉冲星和毫秒脉冲星),人们并没有发现明显的引力波信号,但是对这些脉冲星已经做出了一些有意义的限制^[12] (见图 3):如主要关注的 7 颗年轻的脉冲星中,对脉冲星 J0534+2200(Crab),其转动频率为 29.72 Hz,频率的变化率为 -3.7×10^{-10} Hz/s,距离地球为 2.0 kpc,其产生的引力波振幅为 $h < 1.6 \times 10^{-25}$ (95% 置信度),对应 的椭率上限为 8.5×10^{-5} ,因此引力波带走的能量占其总能量损失率小于 1.2%;对脉冲星 J0835-4510(Vela),其转动频率为 11.19 Hz,频率的变化率为 -1.6×10^{-11} Hz/s,距离地球 为 0.29 kpc,其产生的引力波振幅上限为 $h < 1.1 \times 10^{-24}$ (95% 置信度),对应的椭率上限为 6.0×10^{-4} ,因此引力波带走的能量占其总能量损失率小于 11%;对其他的数颗脉冲星,也发现其引力波辐射的能量占其总能量损失率不到 10%。对于毫秒脉冲星 J1045-4509,J1643-1224,J2124-3358,其引力辐射的上限也与总能量损失率为同一个量级。而椭率最严格

的限制是对毫秒脉冲星 J2124-3358,其自转频率为 202.79 Hz,频率变化率为 -4.4×10^{-16} Hz/s,距离地球 0.3 kpc,其引力波的振幅 $h < 4.9 \times 10^{-26}$,对应的椭率上限为 6.7×10^{-8} 。

图 3 引力波探测器的噪音曲线和 195 颗临近中子星的引力波上限^[12]

最近 LIGO 组汇报了他们对全天的周期性引力波信号扫描寻找的结果^[13],其覆盖的频段为 100~1500 Hz,频率变化的覆盖范围为 [-1.18,+1.00]×10⁻⁸ Hz/s,其主要的引力波源是 邻近的孤立中子星。通过分析 LIGO 第六期的科学运行结果,仍然没有发现确切的引力波信 号,其引力波振幅上限的最低值约 169 Hz,对应的上限为 9.7×10⁻²⁵,而在其最高敏感频率 附近,引力波上限为 5.5×10⁻²⁴。在最高频段,该扫描搜寻最敏感的是椭率 $\epsilon > 8 \times 10^{-7}$,距离地球 d < 1 kpc 的中子星,而观测结果限制在该范围内没有自转频率高于 200 Hz 的中子星 存在。

另一类重要的引力波源是存在于低质量的 X 射线双星系统 (LMXB) 中的中子星,这些中子星正在吸积其伴星的质量和角动量而加速。但是观测发现,几乎所有的该类中子星,其自转频率都低于 700 Hz,远远低于其理论上限 1000 Hz,那到底是什么原因阻止了其自转的进一步加速呢? Bildsten^[14]认为,这是由于该中子星的引力辐射导致的角动量损失和吸积导致的角动量增加达到了平衡,而这种引力辐射可能是由于吸积盘的不对称结构,或者中子星不对称的热分布导致的四极矩变化而产生的。目前的 Rossi 卫星发现,至少部分 LMXB 中确实有中子星存在的证据,而这些中子星自转频率的分布非常窄,大约在 250 ~ 320 Hz 之间^[15]。根据模型计算,这些中子星辐射的引力波振幅为:

$$h = 5.5 \times 10^{-27} \frac{R_{10}^{3/4}}{M_{1.4}^{1/4}} \left(\frac{F_{\rm X}}{F_{*}}\right)^{1/2} \left(\frac{300 \,\,{\rm Hz}}{f}\right)^{1/2} \quad , \tag{35}$$

其中 $R_{10} \equiv R/10$ km, $M_{1.4} \equiv M/1.4 M_{\odot}$, $F_* = 10^{-15}$ J·cm⁻²·s⁻¹, F_X 是 X 射线的辐射能 流。根据式 (35),我们发现 X 射线双星系统越强,对应的引力辐射越强,而已知最强的源应 该是 Scorpius X-1(Sco X-1)系统,该源的引力波未来可能被 AdvLIGO 观测到。

在低频和极低频段的连续引力波源中,互相绕转的致密双星系统是其中最重要的一类。 对于这一类源,只有观测时长远远小于其并合时长时,一般才被看作是连续的波源,因此在 观测时间间隔之内,引力辐射的频率是相对稳定的,其可能的微弱变化一般用频率的变化率 \dot{f}_{gw} 来刻画。对于一个致密双星系统,假设轨道为圆轨道,星体质量分别为 m_1 和 m_2 ,公转 的角速度为 ω ,双星距离为a,而系统距离地球为r,则根据四极辐射公式可以得到该系统辐 射的引力波为^[9]:

$$h_{+} = -h_0 \frac{1}{2} (1 + \cos^2 \iota) \cos[\varPhi(t) + \varPhi_0] \quad , \tag{36}$$

$$h_{\times} = h_0 \cos \iota \sin[\Phi(t) + \Phi_0] \quad , \tag{37}$$

其中, ι 是双星公转平面的法线方向与视线方向的夹角, Φ_0 是初始时刻 $t = t_0$ 引力波的初相 位, 而相位的演化满足关系: $\Phi(t) = 2\pi f(t - t_0) + \pi \dot{f}_{gw}(t - t_0)^2$ 。注意,引力波的频率 f 是 该系统公转频率的两倍。对于该体系,引力波的振幅和引力辐射引起的频率改变分别为:

$$h_0 = \frac{4GM_c^{5/3}}{r} \left(\pi Gf\right)^{2/3} = 4.0 \times 10^{-23} \left(\frac{10 \text{ kpc}}{r}\right) \left(\frac{M_c}{0.52M_\odot}\right)^{5/3} \left(\frac{f}{10^{-3} \text{ Hz}}\right)^{2/3} \quad , \quad (38)$$

$$\dot{f} = \frac{96}{5} \pi^{8/3} \left(GM_c \right)^{5/3} f^{11/3} \quad . \tag{39}$$

其中 $M \equiv m_1 + m_2$ 是双星的质量之和, $\mu \equiv m_1 m_2 / M$ 是约化质量, 而唧质量为 $M_c \equiv \mu^{3/5} M^{2/5}$ 。

我们首先估算,在各个可观测的引力波频段,这种稳定的双星引力波源主要包括哪些 类型。在某个可观测时长 T_{obs} 内,我们可以观测到的引力波周期数为 $N_{obs} = T_{obs}f$ 。而 对于双星系统,其辐射的引力波频率发生明显变化所需要的周期数为 $N_{\text{spindown}} = f^2/f \sim$ $(GM \cdot f)^{-5/3}$ 。因此,如果要求在观测时间内,引力波频率没有明显变化的条件则为 $N_{\rm obs} \ll$ N_{spindown}。在极低频段的引力波主要靠脉冲星计时阵列来观测,其敏感的引力波频率约 为 $f \approx 1 \, \mu \text{Hz}$,脉冲星计时阵列的观测时长一般约为 10 a,因此其对应的观测周期数为 $N_{
m obs} \approx 100$,为了满足引力波稳定的条件,则要求双星的质量为 $M \approx 10^9 M_{\odot}$ 。因此,在极低 频波段,可观测的连续引力波源主要是稳定的超大质量双黑洞系统。在低频波段的引力波主 要靠空间的激光干涉仪引力波探测器来进行探测 (如 LISA 等),其敏感的频段一般为 $f \approx 10$ mHz, 而观测时长一般为年的量级, 由此可以得到观测周期数为 $N_{obs} \approx 10^6$, 为了满足引力 波稳定的条件,则要求双星的质量为 $M \approx 10^2 M_{\odot}$,这样的引力波源主要包括双白矮星系统、 双中子星系统、白矮星-中子星系统、小双黑洞系统,以及中子星-小黑洞双星系统等。而对 于高频波段的引力波,其观测主要依靠各种地面的激光干涉仪引力波探测器 (如 LIGO, Virgo 等),其敏感的频率约为100 Hz,对于1 a 的观测时长,我们有 $N_{\rm obs} \approx 10^9$,这就要求双星的 质量远远小于 Mo, 而这样的致密双星系统是不存在的, 因此在高频波段, 一般认为不存在 稳定的致密双星系统作为引力波源。

对于低频波段的稳定双星引力波源,最常见的是双白矮星系统,这也是未来 LISA 等探测器最主要的探测目标之一。这一类源在宇宙中非常多,对于 LISA 来说,能够观测到的源

数目可以达到几千的量级,我们以目前已知的最强的一个源 (RX J0806.3+1527)为例,来估 算其引力辐射的大小。该双星系统包含两颗白矮星,其中主星的质量为 0.55 M_{\odot} ,伴星的质 量为主星质量的一半,公转频率为 3.11 mHz,频率变化率为 3.57 × 10⁻¹⁶ Hz/s,与视线的倾 角为 38°^[33],该系统到地球的距离在 0.5 到 5 kpc 之间。我们可以发现,即使该源距离地球 为 5 kpc,其产生的引力波振幅仍可以达到 $h_0 \approx 6.4 \times 10^{-23}$,完全在 LISA 的探测范围之内。 此外,对于即将并合的双中子星和双黑洞系统,在其公转周期达到分钟量级,且远离并合时, 也是 LISA 等探测器的理想的连续引力波源。通过观测这样的源,同时可以为 LIGO 等地面 干涉仪探测其并合阶段作预报^[16],因此这些源几乎是唯一的能够实现 LISA 和 LIGO 同时观 测的引力波源,对引力波物理的研究具有重要意义。

对于 LISA 等空间引力波探测器来说,另外一类重要的连续引力波源是大质量比和中等 质量比的双星系统,如绕(超)大质量黑洞旋转的中子星、白矮星或者小质量黑洞组成的致密 双星系统。对于这样的系统,小质量天体在大质量天体视界附近的强引力场中,也需要花费 很多个公转周期才能最终并合。如一个 10 倍太阳质量的黑洞绕 10⁶ 太阳质量的黑洞绕转,即 使已经到达大黑洞的视界附近,小黑洞在掉入大黑洞之前也需要再旋转 10⁵ 个公转周期,因 此其辐射的引力在很长一段时间内是稳定的,可以当作连续的引力波源。对于 LISA 来说, 只要这样的系统距离地球比较近,在 1 ~ 10 Gpc 范围之内,都有可能被探测到,这样的事件 发生率还是比较高的,在 1 年的观测时间内,据估计可以达到几十到几百个的量级^[17]。值得 一提的是,这样的双星系统中,小质量天体的运动可以看作是点粒子在强引力场中的测地线 运动,因此它提供了一个非常干净的研究中心黑洞几何性质的理想场所,这也是这一类系统 引起广泛关注的原因之一。

在标准的关于星系形成的等级形成理论中,一般认为位于星系中心的超大质量黑洞是由于星系并合时的动力学摩擦而产生的,因此在该理论中超大质量双黑洞系统的绕转及并合是 普遍存在的。当其处于并合阶段,辐射的引力波频率比较高,属于空间引力波探测器的探测 范围,这时的引力辐射表现为爆发源。但是,当其处于绕转阶段,公转频率变化比较慢,表 现为连续的引力波源。特别是当其引力辐射的频段达到 10⁻⁸ Hz 附近时,正好处于脉冲星计 时阵列的探测频率范围之内。对于超大质量双黑洞系统,其辐射的引力波振幅可以按照下式 来估算,

$$h_0 = 2.76 \times 10^{-14} \left(\frac{10 \text{ Mpc}}{d_L}\right) \left(\frac{M_c}{10^9 M_\odot}\right)^{5/3} \left(\frac{f}{10^{-8} \text{ Hz}}\right)^{2/3} \quad , \tag{40}$$

其中, d_L 是波源的光度距离, M_c 是双星系统的唧质量,而f是引力波的频率,它是双星 公转频率的两倍。当这样的双星系统距离地球足够近的时候,就可以达到脉冲星计时阵列的 灵敏度范围之内。而事实上,在脉冲星计时阵列运行之前,Jenet 等人已经通过分析 7 a 毫 秒脉冲星 PSR B1855+09 的信号残差对当时的疑似超大质量双黑洞系统 3C66B 的引力辐射 进行了有意义的限制^[18]。当时人们认为,3C66B 系统是公转周期为 1.05 a,黑洞总质量为 $5.4 \times 10^{10} M_{\odot}$,黑洞质量比为 0.1,红移为 z = 0.02 的双黑洞系统。由上式估算,如果双星 运动轨道为圆轨道,则其辐射的引力波应该被脉冲星 PSR B1855+09 的信号残差分析所发 现。但是实际的数据分析并没有发现这样的引力波信号,因此该结果对 3C66B 的超大质量双 黑洞模型提出了挑战。

近年来,国际上三个主要的脉冲星计时阵列团队都对其观测数据中可能存在的双星引力波信号进行了分析,并分别汇报了其限制结果。通过分析 17 颗毫秒脉冲星 5 a 的残差数据,NANOGrav 工作组给出了在 10⁻⁸ Hz 的频率上,引力波上限为 $h_0 < 3.0 \times 10^{-14} (95\%)$ 的置信度)^[19];而 PPTA 团组通过分析 20 颗脉冲星的数据,得到该频率的引力波上限为 $h_0 < 1.7 \times 10^{-14^{[20]}}$; EPTA 团组分析了 6 颗脉冲星,得到的结果为 $h_0 < 1.1 \times 10^{-14^{[21]}}$ 。这些结果都是基于对全空间的方向做积分的结果。在最近的工作中^[22],作者认真分析了三个团组的观测数据,针对两类可能的源进行了重新分析:一类是已经通过别的动力学手段确定了黑洞质量的双黑洞系统;另一类是基于 MASSIVE 巡天得到的距离地球小于 108 Mpc 的 116 颗大质量早型星系中的黑洞系统。分析发现,对于中心黑洞质量超过 5 × 10⁹ M_{\odot} 的星系,包括 NGC4889, NGC4486(M87), NGC4649(M60),如果他们是超大质量双黑洞系统,那么其质量比必须小于 1:10。总之,无论是从星系形成理论的预言来看,还是从已经发现的疑似超大质量双黑洞系统来看,目前的三个脉冲星计时阵列都比较难发现这样的孤立的系统,但这也为未来的 FAST 和 SKA 等望远镜提供了很好的机遇。

3.3 爆发式的引力波源

对于一类引力波源,如果其引力波爆发时标远远小于观测时标,我们称之为爆发式的引力波源。这一类引力波事件一般产生于剧烈的爆发事件,如双星(双白矮星、双中子星、双黑洞等)并合产生的引力波爆发,超新星爆发产生的引力辐射,宇宙弦碰撞时的引力辐射,脉冲星的 Glitch 发生现象时伴随的引力辐射等。在本节中,我们着重介绍两类爆发源:超新星爆发和双星并合。

3.3.1 超新星爆发

我们首先考虑星体坍塌时的引力辐射。我们知道,一颗主序星演化到后期,其核球部分 会坍塌成一颗致密星。当主序星质量小于 8 倍的太阳质量时,其核球最后会坍缩成一颗白矮 星,靠电子简并压抵抗引力来达到平衡。如果白矮星处于双星系统中,可以吸积其伴星的质 量来使其质量增加、温度升高,当质量增大到超过钱德拉塞卡极限时,会产生 Ia 型超新星爆 发。此外,当主序星质量大于 8 倍的太阳质量时,在其演化后期会产生 II 型 (或者 Ib 和 Ic 型)超新星爆发,而核区部分会直接坍缩成中子星或黑洞。一般认为,如果最后形成的是黑 洞,则坍塌时会伴随伽玛射线辐射,这就是我们观测到的长时标的伽马射线暴。

在超新星爆发过程中,一般会伴随着强烈的引力波辐射。但是,由于星体坍塌的物理过 程非常复杂,数值计算起来非常困难,它涉及到复杂的数值相对论、中微子效应、流体力学 过程、微观物理过程和磁场等的影响,至今仍然是一个理论上的难题。因此,在该过程中的 引力辐射的精确预言也具有很大的不确定性。但是反过来,如果能够首先从观测上探测到这 一类型的引力波信号,则可以反推星体坍塌过程中的物理过程,这些过程对电磁辐射来说完 全是不透明的。例如,Hayama 等人^[23]发现,通过观测该过程中辐射出的圆偏振的引力波, 人们可以精确反推出超新星爆发时,核区部分的转动情况。

一般认为,在星体坍塌过程中会产生强烈的引力波。对于一个典型的超新星爆发过程,

数值模拟发现,只要核区物质分布偏离完全的球对称 (这可以由以下几个可能的原因导致:原 初的密度和温度的扰动导致超新星不均匀坍缩;核区的高速旋转可以导致压力不稳定;流体 动力学不稳定可以产生很大的对流,从而影响星体的原初爆发;遗留的中子星形成时具有很 大的激发能量等),就有很大一部分能量被辐射出去,其中约 99% 的能量转化为高能中微子 的能量,约 0.01% 转化为光子能量,而大约 1% 的部分转化为引力波,即将 $10^{-7} \sim 10^{-5} M_{\odot}$ 的能量转化为引力波辐射传播出来,这些引力波的频率一般为 200 ~ 1000 Hz 左右^[9],正好 处于地面激光干涉仪的灵敏度范围之内。考虑银河系内的超新星爆发,我们可以利用下式来 估算其引力波的振幅^[15]:

$$h \approx 6 \times 10^{-21} \left(\frac{E}{10^{-7} M_{\odot}}\right)^{1/2} \left(\frac{1 \text{ ms}}{T}\right)^{1/2} \left(\frac{1 \text{ kHz}}{f}\right) \left(\frac{10 \text{ kpc}}{r}\right) ,$$
 (41)

其中 *E* 是转化为引力波的总能量,其典型值为 $10^{-7} M_{\odot}$; *T* 是爆发持续的时长,一般为毫秒的量级; *f* 为引力波的频率; *r* 是超新星到地球的距离,对于河内的源则一般为 10 kpc 的量级。该振幅对目前的 LIGO, VIRGO 等引力波探测器来说,完全可以在很高的置信度上被观测到。但需要强调的是,在银河系内,超新星爆发的几率非常低:对于 II 型超新星来说,一般认为在银河系内,其爆发率为每年 0.1 到 0.01 次;即使在室女座超星系团内,也只有 30 年 1 次爆发率。因此,在 LIGO 及第二代 AdvLIGO 等探测器的灵敏度范围之内,人们期望观测到这种爆发源的几率其实非常低,而实际可行的观测只能寄希望于以爱因斯坦望远镜为代表的第三代地面引力波探测器。

即使如此,在文献[24, 25]中,作者通过分析 LIGO 等探测器的数据,仍然对一些临近的超新星爆发事件做出了一些有意义的限制。特别是,在文献[25]中,作者通过分析 2007 年至 2011 年的 LIGO, Virgo 和 GEO600 数据来寻找可能的超新星爆发的引力波迹象。在分析中,观测源的选择需要满足三个条件: (1) 在 15 Mpc 以内的临近超新星爆发事件; (2) 超新星事件的爆发时间已经比较精确地确定; (3) 在爆发时,至少有两个以上的引力波探测器正在正常搜集数据。而满足这些条件的只有两个超新星爆发事件,分别是 SNe 2007gr 和 SNe 2011dh。研究发现,并没有发现可疑的引力波候选体,因此这两颗超新星爆发时转化为引力波的能量在低频段不会超过 0.1 M_{\odot} ,而在大于 1 kHz 的高频段不会超过 10 M_{\odot} 。之前人们对超新星爆发时产生的引力波强度估计得太大,新的结果认为,即使第二代引力波探测器,如 AdvLIGO,AdvVirgo 和 KRGRA 等,也只有可能对最临近 ($r \leq 1 \sim 100$ kpc)的超新星进行观测,即只有银河系内和大小麦哲伦云内的超新星事件才可能被观测到,而这样的事件每100 年只有 2 ~ 3 个。因此在近期来看,直接观测到超新星的引力波非常困难。3.3.2 致密双星并合

在已知的各种引力波源中,致密双星系统是人们最确信的,也是研究最多的波源。致密 双星系统的种类很多,包括白矮星双星、中子星双星,以及各种质量的双黑洞系统等。当双 星距离较远,绕转轨道比较稳定时,如前所述,其辐射的引力波振幅和频率也比较稳定,这 一类源属于连续的引力波源。但是当双星距离较近时,公转轨道衰减比较明显,接近或处于 并合的阶段,其时标小于引力波探测器的观测时长,则双星的引力辐射是爆发性的,因此这 样的系统表现为一种爆发式的引力波源。当双星质量较小时,如双中子星并合、中子星-小黑洞的并合,以及双 (太阳质量) 黑洞的并合等,其辐射的引力波是地面激光干涉仪,如 LIGO, Virgo等的主要观测对象,而事实上,在银河系内,人们确实已经发现了 14 个双中子星系统^[26, 27] (见表 1),其中 PSR B1913+16, B1534+12, J0737-3039A, J1756-2251, J1906+0746 (可能是中子星--白矮星系统),J2127+11C^[28],其并合时标小于宇宙年龄;而对于超大质量 (质量大于 10⁶ M_{\odot})双黑洞的并合,以及极端质量比的双黑洞系统的并合,则是 LISA 等空间

引力波探测器,其至脉冲星计时阵列的主要观测对象。

对于这样的致密双星并合的引力辐射,人们已经发展了各种理论模型来很好地对其进行描述。当双星距离较远,星体的运动速度未达到相对论速度,双星的公转轨道由于引力 波辐射造成的衰减比较慢时,后牛顿近似可以很好地描述其引力辐射,该阶段被称为旋进 (inspiral)阶段。但是在绕转阶段的晚期和并合时期,通常统称为并合 (merge)阶段,引力场 非常强,这时后牛顿近似失效,因此一般采用数值相对论的方法来求解。在双星最后并合成 黑洞之后,需要通过引力辐射将多余的自由度辐射掉而变成一个静态的黑洞,这个阶段通常 被称为铃宕 (ringdown)阶段,其辐射的引力波可以用黑洞振荡的 quasi-normal 模来解析描 述。因此,一个双星并合事件的引力辐射模板是由三部分有效叠加而成的,这对引力波信号 的搜寻非常重要。但即使如此,目前人们对双星并合的引力辐射的理解还是非常不成熟的, 如并合时引力潮汐的影响、中子星物态的影响、双星自旋的影响等。但反过来,人们可以通 过观测到的引力波来反推强引力场物理、检验广义相对论理论等,这也是引力波直接探测的 主要科学目标之一。

脉冲星	自转周期	公转周期	轨道投影半长	轨道偏心率	系统总质量	脉冲星质量
	P/ms	$oldsymbol{P}_b/\mathrm{d}$	轴 x (lt-sec)	e	M/M_{\odot}	$M_{ m P}/M_{\odot}$
J0737 - 3039 A	22.699	0.102	1.415	$0.087\ 777\ 5(9)$	$2.587\ 08(16)$	$1.338\ 1(7)$
$\rm J0737{-}3039B$	$2\ 773.461$		1.516		—	
J1518 + 4904	40.935	8.634	20.044	$0.249 \ 484 \ 51(3)$	$2.718\ 3(7)$	
B1534 + 12	37.904	0.421	3.729	$0.273 \ 677 \ 40(4)$	$2.678\ 463(4)$	$1.333\ 0(2)$
J1753 - 2240	95.138	13.638	18.115	0.303 582(10)	—	
J1756 - 2251	28.462	0.320	2.756	$0.180\ 569\ 4(2)$	$2.569\ 99(6)$	1.341(7)
J1811 - 1736	104.1	18.779	34.783	$0.828 \ 02(2)$	2.57(10)	
J1829 + 2456	41.009	1.760	7.236	$0.139\ 14(4)$	2.59(2)	
J1906 + 0746	144.073	0.166	1.420	$0.085 \ 299 \ 6(6)$	2.6134(3)	1.291(11)
B1913 + 16	59.031	0.323	2.342	$0.617 \ 133 \ 4(5)$	2.8284(1)	$1.439\ 8(2)$
J1930 - 1852	185.520	45.060	86.890	0.398 863 40(17)	2.59(4)	
J0453 + 1559	45.782	4.072	14.467	$0.112\ 518\ 32(4)$	2.734(3)	1.559(5)
$\rm J1807{-}2500B$	4.186	9.957	28.920	$0.747 \ 033 \ 198(40)$	$2.571\ 90(73)$	$1.365\ 5(21)$
B2127+11C	30.529	0.335	2.518	$0.681 \ 395(2)$	2.712~79(13)	1.358(10)

表 1 目前已经发现的双中子星系统^[26]

对于目前的第二代地面引力波探测器 (如 AdvLIGO, AdvVirgo 等) 来说,太阳质量的双 星并合的引力波爆发事件是最有可能被首先观测到的引力波源。最主要的波源是恒星级质量 的双星,包括中子星、恒星级黑洞等的并合事件。Abadie 等人^[29]对各种类型的双星并合事件 率做出了如下估计:对于双中子星并合,在银河系内的发生率约为每 10⁶ 年 1 ~ 1000 个,而 最有可能的是每 10⁶ 年 100 个,这对应于在临近宇宙中事件发生率为 0.1 ~ 10 Ma⁻¹·Mpc⁻³, 而最大的可能是 1 Ma⁻¹·Mpc⁻³。因此对于最终的 AdvLIGO 和 AdvVirgo 等的灵敏度来 说,可探测的事件率约为 (0.4 ~ 400) a⁻¹,而最有可能的是每年 40 个事件。而对于 (太阳 质量) 双黑洞并合,以及中子星-黑洞双星的并合率,估算的不确定性非常大。对于中子 星-黑洞并合率约为 (6 × 10⁻⁴ ~ 1) Ma⁻¹·Mpc⁻³,而对于 (太阳质量) 双黑洞的并合率约 为 (1 × 10⁻⁴ ~ 0.3) Ma⁻¹·Mpc⁻³,但是由于这些系统辐射的引力波更强,引力波探测器 可以探测得更远,因此估计最终的 AdvLIGO 或 AdvVirgo 对这些事件的探测率分别约为 (0.2 ~ 300) a⁻¹(中子星-黑洞并合),以及 (0.4 ~ 1000) a⁻¹(双黑洞并合)。

截至目前为止,人们在 AdvLIGO 第一期的科学运行时得到的数据中并未发现双中子星, 以及中子星-黑洞并合事件发生。在模板匹配时,作者假设中子星的质量范围为 $(1 \sim 3) M_{\odot}$, 而自旋小于 0.05;同时假设黑洞的质量在 $(2 \sim 99) M_{\odot}$,对其自旋不做任何限制。通过考 虑 AdvLIGO 目前的灵敏度曲线发现,如果中子星的质量均为 $(1.35 \pm 0.13) M_{\odot}$,则在距离 地球小于 70 Mpc 范围内的双中子星并合事件都可能被发现;而对于中子星-黑洞并合来说, 如果中子星质量作同样假设,同时要求黑洞质量大于 5 M_{\odot} ,则在距离地球小于 110 Mpc 范 围内的并合事件都可能被发现。所以根据目前的实际观测结果,人们给出的事件发生率上 限分别为:双中子星并合率应该小于 12 600 Gpc⁻³·a⁻¹,中子星-黑洞的并合率应该小于 3 600 Gpc⁻³·a⁻¹,这些结果和上面的估计都是相符的。

但是 AdvLIGO 对双黑洞并合事件的观测却取得了巨大的突破,首次发现了两例明显的 引力波爆发事件和一例疑似事件,这是人类首次直接探测到的引力波信号,对整个天文学和 物理学都产生了巨大影响。其中,引力波事件 GW150914 在世界标准时间 2015 年 9 月 14 日 被 AdvLIGO 位于 Hanford 和 Livingston 的两个探测器发现 (见图 4),通过模板匹配发现其 信噪比达到了 23.7^[4](见表 2),这是探测器 AdvLIGO 在其初期的 16 d 运行数据中发现的最 强引力波信号。在 (35 ~ 250) GHz 的频段范围内,该信号的振幅峰值达到 $h = 1.0 \times 10^{-21}$, 而引力辐射功率的峰值达到 3.6×10^{49} J·s⁻¹,即等价于每秒钟辐射 200 M_{\odot} 的等效能量。通 过分析发现,该引力波是由双黑洞绕转并合所产生,波源到地球的光度距离为410 Mpc,等 效于宇宙学红移为 z = 0.09,并合前两个黑洞的质量分别为 $m_1 = 36 M_{\odot}$ 和 $m_2 = 29 M_{\odot}$, 并合后的黑洞质量为 $M = 62 M_{\odot}$,因此其并合过程中共有 $3 M_{\odot}$ 的能量转化为引力波被带 走。通过数据分析,人们发现并合之前,较大的黑洞的自旋小于 0.7,因此可以排除是极端 克尔黑洞的可能性,较小的黑洞的自旋限制得很弱,但是并合后的黑洞的自旋非常明显,达 到 0.67, 因此是典型的克尔黑洞。由于目前仅有两个引力波探测器, 因此对该源的定位能力 非常差,其位置的不确定度达到600平方度。尽管如此,这仍是人类首次直接发现的引力波 信号,也是首次发现的双黑洞星并合事件,这些结果表明宇宙中确实存在恒星质量的双黑洞 系统。同时,通过分析不同频率上的引力波信号,人们已经对引力子质量提出了重要的限制,

表 2 AdvLIGO 发现的 3 个双黑洞并合引力波事件							
Event	GW150914	GW151226	LVT151012				
Signal-to-noise ratio: ρ	23.7	13.0	9.7				
False alarm rate: FAR/a^{-1}	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	< 0.37				
p-value	7.7×10^{-8}	7.5×10^{-8}	0.045				
Significant	$> 5.3\sigma$	$> 5.3\sigma$	$> 1.7\sigma$				
Primary mass: $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}				
Secondary mass: $m_2^{\text{source}}/M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}				
Chirp mass: $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$				
Total mass: $M^{\rm source}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$28.1^{+5.9}_{-1.7}$	37^{+13}_{-4}				
Effective inspiral spin: χ_{eff}	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20\\-0.10}$	$0.0\substack{+0.3\\-0.2}$				
Finial mass: $M_{\rm f}^{\rm source}/M_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}				
Final spin: $a_{\rm f}$	$0.68\substack{+0.05\\-0.06}$	$0.74\substack{+0.06\\-0.06}$	$0.66\substack{+0.09\\-0.10}$				
Radiated energy: $E_{\rm rad}/(M_{\odot}c^2)$	$3.0\substack{+0.5\\-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5^{+0.3}_{-0.4}$				
Peak luminosity: $\ell_{\rm peak} / \left(10^{49} {\rm J} \cdot {\rm s}^{-1} \right)$	$3.6\substack{+0.5\\-0.4}$	$3.3^{+0.8}_{-1.6}$	$3.1^{+0.8}_{-1.8}$				
Luminosity distance: D_L/Mpc	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}				
Source redshift: z	$0.09\substack{+0.03\\-0.04}$	$0.09\substack{+0.03\\-0.04}$	$0.20\substack{+0.09 \\ -0.09}$				
Sky licalization: $\Delta \Omega / \text{deg}^2$	230	850	$1\ 600$				

 $m_g < 1.2 \times 10^{-22} \text{ eV}$,它对应的康普顿波长 $\lambda_g > 10^{13} \text{ m}$ 。

图 4 AdvLIGO 位于 Hanford(H1,图 a)) 和 Livingston(L1,图 b)) 的两个探测器观测到的 GW150914 的 信号,以及与理论计算结果的比较^[4]

目前为止,被 AdvLIGO 观测到的次强的引力波爆发事件 GW151226 发生在国际时间

[31]

2015 年 12 月 26 日^[5],它是由两个恒星质量级别的黑洞并合所产生的。事件在 AdvLIGO 敏感的频段持续时间长达 1 s,通过模板匹配发现该事件的信噪比为 13,超过 5 σ 的置信度。在 (35 ~ 450) Hz,双星绕转的周期达到了 55 个,而其引力波振幅的峰值为 $h = 3.4 \times 10^{-22}$,引力辐射功率的峰值达到了 3.3×10^{49} J·s⁻¹。通过数值分析发现,该波源到地球的光度 距离为 440 Mpc,即宇宙学红移为 z = 0.09。在该波源中,两个黑洞的初始质量分别为 $m_1 = 14.2 M_{\odot}$ 和 $m_2 = 7.5 M_{\odot}$,而并合后的黑洞质量为 $M = 20.8 M_{\odot}$,因此约 1.0 M_{\odot} 的质量被引力波带走。同时,拟合发现双黑洞中至少一个黑洞有明显的自转,其自旋超过 0.2,而并合后的黑洞自旋为 0.74,是典型的克尔黑洞。AdvLIGO 对于该源的具体位置仍然不确定,其不确定度达到了 1 400 平方度。

此外,第三强的 (疑似) 引力波爆发事件 LVT151012 发生在国际标准时 2015 年 10 月 12 日^[30],其信噪比达到 9.7,等价于 2.1 σ 的置信度,相对于前两个事件来说,该源的置信度较低 (因此 AdvLIGO 并不能十分确定该源确实是一个引力波爆发事件)。该爆发源仍然是双黑 洞系统的并合事件,爆发源到地球的光度距离为 1 100 Mpc,对应宇宙学红移为 z = 0.20。并 合之前两个黑洞的质量分别为 $m_1 = 23 M_{\odot}$ 和 $m_2 = 13 M_{\odot}$,并合后的黑洞仍是典型的克尔 黑洞,质量约为 35 M_{\odot} ,自旋约为 0.66,即引力波带走的能量为 1.5 M_{\odot} 。该爆发事件对应的 引力辐射的功率峰值为 3.1 × 10⁴⁹ J·s⁻¹,该事件的位置不确定度为 1 600 平方度。

根据这些关于双黑洞并合事件的观测,人们可以对宇宙中的双黑洞并合率做出比较好的限制。LIGO和 Virgo工作组考虑了两种情况^[31]:第一种情况假设双黑洞系统在宇宙中的分布与双星质量的关系满足 $p(m_1,m_2) \propto m_1^{-1}m_2^{-1}$;而在第二种情况中则假设双黑洞系统的分布函数与主星的质量关系满足 $p(m_1) \propto m_1^{-2.5}$,与次星的质量分布无关。同时假设双星的质量在如下范围之内: $m_1 \leq m_2 \leq 5 M_{\odot}$,并且 $m_1 + m_2 \leq 100 M_{\odot}$ 。其中第一种情况下,有可能低估了较大质量的双黑洞并合的几率;而在第二种情况下,则有可能低估了较小质量双黑洞的贡献。总之,通过对已经观测到的3个双黑洞并合事件的分析,并综合考虑两种情况得到双黑洞并合率为9~240 Gpc⁻³·a⁻¹,其中下限来自于对第一种情况的估算,而上限是来自于对第二种情况的估算。这样的事件发生率与前述的理论估算结果是自洽的。同时,根据这三个引力波爆发源,人们也可以估算双黑洞并合事件中的黑洞质量分布:首先,假设双黑洞系统中主星的质量分布满足幂律关系 $p(m_1) \propto m_1^{-\alpha}$,其中 α 是待拟合的自由参数;再假设次星的质量在 $5 M_{\odot}$ 和 m_1 之间并满足平均分布,则拟合发现 $\alpha = 2.5^{+1.6}_{-1.6}$,与前述第二种情况的假设一致。

对于未来的空间引力波探测器 (如 LISA 等) 来说,超大质量双黑洞的并合将是最主要 的观测对象。无论从星系形成的理论模型,还是从目前对双黑洞的观测来说,超大质量黑洞 在宇宙学尺度上的演化与并合都是不可避免的,但是目前对该类并合事件的发生率的估算 还有较大的不确定性,这其中涉及到很多非常复杂的物理过程。Klein 等人^[32]通过半解析方 法认真研究了在不同的星系演化绘景中,超大质量双黑洞并合的事件发生率,以及未来的 eLISA 计划对此类事件的探测率等相关问题。对于超大质量黑洞的形成,作者考虑了三种不 同的模型:在第一种中考虑所谓的 light-seed 模型 (即 popIII 模型),认为超大质量黑洞起源 于 popIII 恒星演化的遗迹,同时考虑到大质量黑洞的并合与星系并合之间的时间延迟效应; 在第二种模型中考虑了所谓的 heavy-seed 模型 (即 Q3-d 模型),认为质量为 $10^5 M_{\odot}$ 的超大 质量黑洞在宇宙早期 ($z \approx 15 \sim 20$) 已经形成了,其形成的原因可能是星系碰撞或别的因素, 在该模型中也考虑到大质量黑洞的并合与星系并合之间的时间延迟效应;而第三种模型 (即 Q3-nod 模型) 与第二种模型几乎一样,但是忽略了所谓的延迟效应。通过半解析计算发现, 在 popIII 模型中,对最乐观的 eLISA 设计方案来说,在 5 年的运行时间内,可探测到的超 大质量黑洞的并合事件为 660 例左右,其中 z > 7 的高红移事件可以达到 401 例;在 Q3-d 模型中总事件率为 40 例,其中 z > 7 的高红移事件为 3.6 例;而在 Q3-nod 模型中则总事件 为 596 例左右,其中高红移事件为 343 例。而即使对于最悲观的 eLISA 设计方案来说,其可 探测的事件率也可以达到如下水平:在 popIII 模型中总事件率为 28 例,其中高红移事件 1 例;在 Q3-d 模型中为 12 例,其中高红移事件 0.3 例;在 Q3-nod 模型中为 95 例,其中高红 移事件 6 例。

3.4 引力波背景

除了上述提到的各种孤立的引力波源之外,宇宙中还存在各种随机的引力波背景,这可 以类比于宇宙中普遍存在的微波背景辐射光子场。引力波背景的种类是多样的,按照其来源 进行分类,大致可以分为两类:一类是来自于上述孤立引力波源的集体贡献,如大量的双中 子星和双白矮星系统的引力辐射的贡献,以及大量的超大质量黑洞双星辐射形成的引力波背 景;另一类是宇宙学起源,如宇宙暴胀时期将量子涨落拉出视界形成的原初引力波背景,宇 宙弦的振动和碰撞形成的引力波背景,以及各种早期宇宙相变 (如 QCD 相变、弱电相变等) 辐射的引力波背景。在本节中,我们将分别介绍这两种类型的引力波背景源。

3.4.1 天体物理过程产生的随机引力波背景

在许多天体物理过程中,如中子星自转、致密双星系统的演化、超新星爆发等都会辐射 引力波。由于在宇宙空间中,这样的引力波事件总是大量存在的,并且是近似均匀随机分布 的,因此很容易形成随机的引力波背景。对于不同类型的波源,他们辐射的引力波背景的性 质也不同,在本节中,我们主要介绍三类随机的引力波背景:双白矮星绕转系统的辐射,双 中子星和太阳质量双黑洞并合的辐射,以及超大质量双黑洞并合的辐射。

3.4.1.1 双白矮星绕转系统

如前节所述,双白矮星系统是一类非常重要的引力波源,而且即使在银河系中,这样的 波源数目也非常巨大,预计可以达到 10⁸ 的量级。因此综合这些源的贡献,可以形成非常重 要的低频引力波背景,这将是未来 LISA 等空间引力波探测器的主要探测目标之一。但是与 中子星和黑洞双星的演化不同,双白矮星系统的演化涉及到复杂的物质交换过程,因此其动 力学非常复杂。为了简单起见,我们忽略掉这些演化细节,只假设其稳定绕转阶段的引力辐 射,而忽略掉其中复杂的物质交换等动力学过程。为了描述背景引力波的大小,我们通常定 义引力波的能量密度:

$$\Omega_{\rm GW}(f) = \frac{f}{\rho_c} \frac{\mathrm{d}\rho_{\rm GW}}{\mathrm{d}f} \quad , \tag{42}$$

其中, $d\rho_{GW}$ 是在频率 $f \sim f + df$ 内的引力波的能量密度, $\rho_c \equiv 3H_0^2/8\pi G$ 是宇宙的临界密度, H_0 是哈勃常数。对于双白矮星系统来说, 它辐射的引力波背景依赖于在宇宙中双白矮星

系统的形成率和演化过程。在计算中,我们作如下近似:(1)假设该双星系统的角动量损失 主要是由引力辐射造成的;(2)假设在宇宙演化过程中,该双星系统的形成率是常数;(3)假 设该双星系统在星系中的分布与其在银河系中的分布一致。根据这些假设,我们可以得到背 景引力波的能量密度具有如下形式^[9]:

$$\Omega_{\rm GW} = \frac{1}{\rho_c} \frac{R E_{\rm GW}}{6\pi \langle r \rangle^2} \quad , \tag{43}$$

其中, *R* 是双星的形成率 (约为 0.01 a⁻¹), E_{GW} 是单个源的平均引力辐射能量, $\langle r \rangle$ 是波源 之间的平均间距。代入合理的模型参数可以得到如下参数化形式:

$$\Omega_{\rm gw}(f) \approx 4 \times 10^{-8} \left(\frac{R}{(100 \text{ a})^{-1}}\right) \left(\frac{M}{M_{\odot}}\right)^{5/3} \left(\frac{f}{10^{-3} \text{ Hz}}\right)^{2/3} \left(\frac{r}{10 \text{ kpc}}\right)^{-2} \quad . \tag{44}$$

这里需要说明的是,上述的第二条假设,即假设双星的角动量损失主要由引力辐射造成的, 很有可能是不合理的,因此实际的该引力波背景有可能比上述讨论的要小一些。 3.4.1.2 太阳质量的致密双星并合系统

与双白矮星的引力辐射不同,双中子星和太阳质量黑洞双星系统并合所辐射的随机引力 波背景,一般频率较高,其峰值一般为100 Hz 的量级,因此是未来的地面激光干涉仪引力波 探测器的主要探测目标之一。在这方面,已经有大量的工作对该系统辐射的引力波背景进行 了详细的估算。我们这里采用最近的工作^[34]中的计算结果,在该文中,作者考虑了最新观测 得到的关于中子星和黑洞的分布函数,同时考虑到了完整的引力波辐射的解析形式 (包含了 后牛顿引起的振幅修正)。

对于这一类系统辐射的引力波能量密度,可以按照如下公式计算:

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \int_{z_{\rm min}}^{z_{\rm max}} \frac{N(z)}{(1+z)} \left(\frac{\mathrm{d}E_{\rm GW}}{\mathrm{d}\ln f_r} \right) \Big|_{f_r = f(1+z)} \quad , \tag{45}$$

其中, N(z) 是引力波事件在红移 z 处的数密度, $\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}\ln f_r}$ 是单个源辐射的引力波能谱。通过选择合适的模型参数,该公式可以简化为:

$$\Omega_{\rm GW}(f) \approx 9 \times 10^{-10} \left(\frac{r}{1 \,{\rm Mpc}^{-3} \cdot {\rm Ma}^{-1}} \right) \left(\frac{\langle M_c^{5/3} \rangle}{1 M_{\odot}^{5/3}} \right) \left(\frac{f}{100 \,{\rm Hz}} \right)^{2/3} \quad , \tag{46}$$

其中, r 是引力波事件的平均间距, M_c 是系统的唧质量。该结果表明: (1) 在低于 100 Hz 的 频段,背景引力波的振幅主要依赖于双星并合事件的发生率以及唧质量的分布; (2) 在这个 频段范围内,引力波的能谱可以用幂律形式 $\Omega_{\rm GW} \propto f^{2/3}$ 很好地描述。

最近 LIGO 发现的引力波事件 GW150914 表明,较大质量的双黑洞系统在宇宙中是广泛 存在的。类似于 GW150914 这样的双黑洞并合事件在宇宙中的发生率为 16^{+38}_{-13} Gpc⁻³·a⁻¹。 根据该结果,LIGO 合作组估算了双黑洞并合事件产生的随机引力波背景的大小^[35]:在 AdvLIGO/AdvVirgo 对随机背景最敏感的频段 $f \approx 25$ Hz,他们预言引力波的振幅为 $\Omega_{\rm GW}(f = 25 \,{\rm Hz}) = 1.1^{+2.7}_{-0.9} \times 10^{-9}$,这大大高于之前人们的预期。根据该计算结果,再结合 引力波探测器的灵敏度曲线,该背景最终可以被 AdvLIGO/AdvVirgo 探测到 (见图 5),这无疑将是一个重大的发现。

图 5 a) 双黑洞并合产生的随机引力波背景与 AdvLIGO 探测器灵敏度曲线的比较; b) 预计通过 AdvLIGO 探测该引力波背景的信噪比与观测时间长度的关系^[35]

2014 年, LIGO 和 Virgo 合作组在其最近的观测数据中搜寻随机引力波背景,但是还 没有发现该引力波信号^[36]。通过假设引力波能谱具有如下形式: $\Omega_{GW}(f) = \Omega_{\alpha}(f/f_{ref})^{\alpha}$,他 们在 95% 的置信度对引力波振幅给出了限制:在 (41.5 ~ 169.25) Hz 的频段范围内,假设 $\alpha = 0$,则有 $\Omega_{GW}(f) < 5.6 \times 10^{-6}$;在 (170 ~ 600) Hz 的频段,则有 $\Omega_{GW}(f) < 1.8 \times 10^{-4}$; 在 (600 ~ 1000) Hz 的频段内,对引力波的限制为 $\Omega_{GW} < 0.14(f/900 \text{ Hz})^3$;在 (1000 ~ 1726) Hz 内,则为 $\Omega_{GW} < 1.0(f/1300 \text{ Hz})^3$ 。此外,通过分析 LIGO 组的 H1 和 H2 数据, 利用其相关性,LIGO 工作组对 (460 ~ 1000) Hz 高频引力波给出了更严格的限制,即 $\Omega_{GW} < 0.14(f/900 \text{ Hz})^{3^{[37]}}$ 。

3.4.1.3 超大质量双黑洞并合系统

按照星系的等级成团理论,大质量星系是由小质量星系通过不断的并合而形成。在星系 并合过程中,中心的大质量黑洞将首先通过动力学摩擦形成硬态,然后通过某种途径 (如气 体的相互作用,恒星散射等) 跨入最后一个秒差距,进入引力辐射主导的阶段而释放引力辐 射。当没有明显的爆发源存在时,来自不同地方的引力辐射源的非相干叠加将构成一个均匀 各向同性的随机引力波背景,其对应的引力波频率一般在 10⁻⁹ Hz 左右,因此是目前脉冲星 计时阵列探测的主要波源。对于这一类引力波背景,其能量密度通常写为如下形式:

$$\Omega_{\rm GW}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f) \quad , \tag{47}$$

其中, h_c 是引力波的特征强度,它一般可以用下面的幂律形式来参数化 $h_c(f) = A(f/f_a)^{\alpha}$, 其中 A 为引力波的振幅, α 是谱指数, $f_a = 1/a = 3.17 \times 10^{-8}$ Hz。当前对该频段引力波最强的观测限制来自于 PPTA 观测组,在 $\alpha = -2/3$ 时,得到的上限为 $A < 1.0 \times 10^{-15^{[38]}}$ (见图 6)。

图 6 PPTA 给出的随机背景引力波的上限与各种理论预言的超大质量双黑洞产生的引力波背景的比较^[38]

下面我们讨论理论预言的该随机引力波背景的性质。在地球上观测到的引力辐射是各个 红移上不同质量的并合双黑洞引力辐射的非相干叠加,其特征强度由如下公式计算:

$$h_c^2 = \int_0^\infty \mathrm{d}z \int_0^\infty \mathrm{d}M_c \frac{\mathrm{d}^3 N}{\mathrm{d}z \mathrm{d}M_c \mathrm{d}\ln f_r} h^2(f_r) \quad , \tag{48}$$

其中, $f_r = (1+z)f$ 是考虑到红移修正后的引力波频率, z 是红移, N 是并合事件的数目, $h(f_r)$ 是在光度距离 d_L 处观测到的唧质量为 M_c 的源经过方向和极化平均后的辐射强度,表达式为:

$$h(f_r) = \frac{8\pi^{2/3} M_c^{5/3}}{\sqrt{10} d_L(z)} f_r^{2/3} \quad .$$
(49)

可见,该背景辐射的计算在于确定红移和质量空间上的黑洞并合数目 d³N/dzdM_cd ln f_r ,其本质是解决星系的并合与演化,中心黑洞与周围恒星,黑洞与黑洞之间的相互作用。虽然,目前人们还不能从星系形成理论中严格推导出该分布的详细表达式,但是根据目前观测得到的星系质量分布函数、星系并合率,以及中心黑洞与宿主星系的质量关系,结合星系等级成团理论,可以计算出 $h_c(f)$ 确实呈现幂律关系,并且其谱指数为 $\alpha = -2/3$,这是该引力波背景最主要的特征之一。而其振幅估算却有一定的不确定性,但大多数模型都显示 $A \approx 10^{-15}$ 的量级,因此目前的观测似乎已经对其中的部分模型做出了比较严格的限制^[38]。 3.4.2 字宙原初引力波

除了上述天体物理过程产生的引力波背景之外,还有一类非常重要的随机引力波背景,

起源于宇宙的膨胀与演化过程,因此被称为宇宙学起源的背景引力波。这一类引力波源也可 能来自于宇宙演化的不同阶段,包括宇宙暴胀时期形成的原初引力波,宇宙重加热过程产生 的引力波,早期宇宙相变过程产生的引力波,宇宙弦等大尺度结构的运动与演化过程中产生 的引力波。在本节中,我们只关注其中最重要的原初引力波部分,这是目前模型最为确定的 一种宇宙背景引力波源。

3.4.2.1 暴胀宇宙学

目前我们知道,在标准的热大爆炸之前,宇宙经历了一个急速膨胀时期,通常称为暴胀 过程。在该过程中,宇宙经历了一个近似 e 指数膨胀过程。一般模型认为,该模型至少要使 宇宙尺度因子在极短的时间内膨胀 10²⁰ 倍以上,而宇宙视界在此时却几乎没有变化。因此该 阶段宇宙的急速膨胀将本来有因果联系的区域迅速推到视界之外。当进入实物为主时期以后, 这些区域再慢慢回到视界之内,因而自然地解决了大爆炸模型存在的各种宇宙学疑难,例如 视界疑难、均匀性疑难、磁单极子疑难等。而且暴涨将早期的量子涨落推出视界变成经典涨 落,从而形成了宇宙结构起源的种子,因而也自然回答了宇宙的结构起源疑难,这就是暴胀 理论的基本思想。在暴胀阶段被推出视界的量子涨落主要包括两类:即标量型的密度扰动和 张量型的引力波。密度扰动直接与物质耦合,因此为宇宙大尺度结构形成提供了初始条件。 而由于引力波与物质的相互作用非常弱,在其传播过程中几乎是自由传播的,其演化行为仅 仅决定于宇宙在各个时期的膨胀行为;因此通过探测各个频段的原初引力波,可以直接推知 宇宙在各个阶段(包括暴胀阶段)的演化,这也是探测原初引力波的最重大科学意义所在。

在标准暴胀模型中,暴胀过程通过一个标量场来实现。暴胀场的作用量为^[39]:

$$S = \int d^4x \sqrt{-g} \mathcal{L} = \int d^4x \sqrt{-g} \left(\frac{1}{2}\partial_\mu \phi \partial^\mu \phi + V(\phi)\right) \quad .$$
 (50)

通常我们假设暴胀场是近似均匀各向同性的,并且存在很小的扰动成分,即

$$\phi(\boldsymbol{x},t) = \phi(t) + \delta\phi(\boldsymbol{x},t) \quad . \tag{51}$$

暴胀场的能量密度和压强分别是:

$$\rho_{\phi} = \dot{\phi}^2/2 + V(\phi) , \quad p_{\phi} = \dot{\phi}^2/2 - V(\phi) .$$
 (52)

当 $V(\phi) \gg \dot{\phi}^2$ 时,我们有 $p_{\phi} \simeq -\rho_{\phi}$ 。从这里我们看到一个标量场为主,且势能远远大于动能的宇宙处于 de Sitter 相中,即我们得到了一个被标量场真空能所驱动的暴胀过程。此时暴胀场的运动方程为:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) = 0 \quad , \tag{53}$$

其中, $V_{\phi} \equiv dV/d\phi$ 。由于 $3H\dot{\phi}$ 的出现,我们看到宇宙的膨胀阻碍着暴胀场沿着势 $V(\phi)$ 的滚动。为了有足够长的滚动时间,我们要求 $\ddot{\phi} \ll 3H\dot{\phi}$,因此一般地,我们称以下两个条件为 慢滚条件:

$$\dot{\phi}^2 \ll V(\phi) \Longrightarrow \frac{V_{\phi}^2}{V} \ll H^2 \ , \ \ddot{\phi} \ll 3H\dot{\phi} \Longrightarrow V_{\phi\phi} \ll H^2 \ .$$
 (54)

当这两个条件满足时,暴胀场将缓慢地沿着势能函数滚下,这段时间通常被称为慢滚动。我 们可以定义慢滚动参数:

$$\epsilon \equiv -\frac{\dot{H}}{H^2} = 4\pi G \frac{\dot{\phi}^2}{H^2} \simeq \frac{1}{16\pi G} \left(\frac{V_{\phi}}{V}\right)^2 \quad , \quad \eta \equiv \frac{1}{8\pi G} \left(\frac{V_{\phi\phi}}{V}\right) \quad . \tag{55}$$

而相应的慢滚条件可以表示为:

$$\epsilon \ll 1 \ , \quad \eta \ll 1 \ . \tag{56}$$

3.4.2.2 原初引力波

下面我们讨论原初张量扰动,即宇宙残余引力波的原初谱。在 Friedmann-Robertson-Walker 宇宙中,线性张量扰动的度规一般可以写为:

$$ds^{2} = a^{2}(\tau) [-d\tau^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j}] \quad ,$$
(57)

其中, τ 为共形时间,它跟宇宙时间的关系为 $ad\tau = dt$ 。 h_{ij} 是横向无迹的张量扰动,它的功率谱 $P_t(k)$ 可以定义为:

$$\langle h_{\boldsymbol{k},\lambda}, h_{\boldsymbol{k}',\lambda}^* \rangle = \frac{2\pi^2}{k^3} P_t(k) \delta^3(\boldsymbol{k} - \boldsymbol{k}') \quad , \tag{58}$$

其中, h_k 是 h_{ij} 的傅里叶展开系数。

根据 Einstein-Hilbert 作用量,我们写出其二阶张量扰动部分^[39],

$$S = \frac{1}{8} \int a^{2} [(h'_{ij})^{2} - (\partial_{l} h_{ij})^{2}] d\tau d^{3} \boldsymbol{x},$$

$$= \frac{1}{2} \int d^{3} \boldsymbol{k} \sum_{\lambda} \int \left[|v'_{\boldsymbol{k},\lambda}|^{2} - (\boldsymbol{k}^{2} - \frac{a''}{a} |v_{\boldsymbol{k},\lambda}|^{2}) \right] d\tau \quad ,$$
(59)

其中, $f' \equiv df/d\tau$, $v_{k,\lambda} \equiv ah_{k,\lambda}/2$ 。经过量子化可以得到 v_k 的运动方程:

$$v_k'' + \left(k^2 - \frac{a''}{a}\right)v_k = 0 \quad . \tag{60}$$

同时选择绝热条件:

$$v_k \to \frac{1}{\sqrt{2k}} \mathrm{e}^{-\mathrm{i}k\tau}$$
 , (61)

可以得到张量扰动的 Stewart-Lyth 公式:

$$P_t(k) \simeq \left. \frac{8}{M_{pl}^2} \frac{H^2}{4\pi^2} \right|_{aH=k} \simeq \left. \frac{8}{M_{pl}^2} \frac{V}{12\pi^2} \right|_{aH=k} \quad , \tag{62}$$

其中, $M_{pl} = 1/\sqrt{8\pi G}$ 是约化的 Planck 质量。该功率谱一般可以参数化为幂律形式 $P_t(k) = A_t (k/k_0)^{n_t}$, 其谱指数 $n_t = -2\epsilon$ 。为了联系标量和张量扰动的大小, 我们可以定义一个新的参数: 张量-标量比 $r \equiv \frac{P_t(k_0)}{P_s(k_0)}$ 。可以证明单标量场预言的张量-标量比满足一致性关系 $r = 16\epsilon = -8n_t$ 。因此通过验证该一致性关系,可以对这一大类暴胀模型做出观测检验^[40]。

3.4.2.3 原初引力波的演化

对于式 (57) 定义的引力波, 其演化方程为:

$$\partial_{\mu}(\sqrt{-g}\partial^{\mu}h_{ij}) = -16\pi G\pi_{ij} \quad , \tag{63}$$

其中,各向异性部分 π_{ij} 可以看作引力波的产生源,它可以由宇宙中的自由粒子流 (例如中微 子等) 来提供。但是研究表明,它只略微影响频率在 10⁻¹⁶ ~ 10⁻¹⁰ Hz 波段的引力波,因此 一般该效应可以忽略。在 Fourier 空间中,演化方程可以改写为:

$$h_k'' + 2\frac{a'}{a}h_k' + k^2h_k = 0 \quad , \tag{64}$$

其中,"撇"表示对共形时间 τ 求导。对于一个给定波数 k,在某个给定时间 τ ,我们可以定义转移函数 t_f 为:

$$t_f(\tau, k) \equiv h_k(\tau) / h_k(\tau_i) \quad , \tag{65}$$

其中, τ_i 表示热大爆炸初始时刻。该转移函数的严格表达式可以通过严格求解式 (64) 来得到。这里我们利用其解析近似表达式。从引力波的演化方程,我们知道对于某给定波数 k 的引力波,当其波长远远大于视界时,即 $k \ll aH$,引力波的振幅保持不变;而当其波长远远小于视界时,即 $k \gg aH$,引力波的振幅 $h_k \propto 1/a(\tau)$,随着宇宙的膨胀而衰减。在标准的 ACDM 宇宙中,暴胀结束之后依次是辐射为主时期、物质为主时期、宇宙学常数为主时期。 在该模型中,转移函数随时间的导数可以用以下公式来近似^[41]:

$$\dot{t}_f(\tau_0, k) = -\frac{3j_2(k\tau_0)\Omega_m}{k\tau_0} \sqrt{1 + 1.36\left(\frac{k}{k_{\rm eq}}\right) + 2.50\left(\frac{k}{k_{\rm eq}}\right)^2} \quad , \tag{66}$$

其中, $k_{eq} = 0.073 \Omega_m h^2 Mpc^{-1}$, 它表示宇宙在辐射-物质相等时刻进入宇宙视界的引力波的波数, $\tau_0 = 1.41 \times 10^4 Mpc$ 是现在的宇宙共形时间, Ω_m 是现在物质所占的宇宙总能量的比重。当然, 如果考虑早期宇宙中中微子作为自由流体, 这也可以略微改变频率在 $10^{-16} \sim 10^{-10} Hz$ 的引力波能谱; 而且早期宇宙的各种相变 (包括正负电子湮灭相变, QCD 相变等) 也可以略微改变频率高于 $10^{-10} Hz$ 的引力波。

引力波的能量密度 Ω_{GW} 可以表述为 $\Omega_{\text{GW}}(k) = \frac{P_t(k)}{12H_0^2} i_f(\tau_0, k)$ 。在图 7 中,我们画出了 原初引力波的能量密度与张量-标量比,以及谱指数的依赖关系。由于原初引力波是一种全频 段的背景引力波源,因此原则上可以通过各种不同的引力波探测器对各个频段的引力波进行 探测。但是从图 7 中,我们很容易发现,在近期最有可能探测到的是在极低频波段,通过观 测宇宙微波背景辐射的偏振信号来实现。目前,最好的观测结果来自 BICEP2 和 Keck Array 望远镜,它们得到的引力波上限为 $r < 0.07^{[42]}$ 。预计在未来 5 年内,通过各种地面探测器可 以将其上限提高到r = 0.01的水平。

4 总结与展望

引力波是广义相对论最重要的预言之一。在过去的一个世纪里,引力波的理论研究取得

图 7 原初引力波的能量密度对张标比 r 和谱指数 n_t 的依赖关系,以及各种探测方法的限制情况^[41]

了重大的进展,包括高阶后牛顿近似理论的发展、数值相对论的突破、宇宙扰动理论的建立 等多个方面。与此同时,在引力波探测方面,人们也作出了巨大的努力。首次直接探测引力 波的实验可以追溯到 20 世纪 50 年代的韦伯,他设计了第一个引力波探测器,即韦伯棒,但 是并没有通过它观测到引力波信号。在其后的几十年里,世界上还建成了 5 个共振棒,虽然 这些共振棒的灵敏度不断改进,但是仍然没有探测到引力波信号。之后,人们通过观测脉冲 星 PSR B1913+16 的轨道衰减,首次得到了引力波存在的证据,但仍然属于间接探测。直接 探测直到 2016 年才取得突破,即 LIGO 合作组于 2016 年 2 月首次宣称发现了双黑洞并合产 生的引力波信号 GW150914,这标志着引力波天文学这门新的学科的建立。当然,引力波探 测还需要多台探测器同时探测,以进一步相互验证。

引力波之所以重要,一方面是因为它是爱因斯坦广义相对论最重要的预言,它的探测对 于研究引力场的波动性、量子性具有不可替代的作用。同时,通过引力波,人们可以研究强 引力场物理,在强引力场中精确检验广义相对论,以及区分不同的引力理论^[1]。例如,在广 义相对论中,引力波只有两个极化分量;但是在修改引力理论中,引力波却最多可以有6个 独立的极化分量,这提供了检验各种引力的理想途径。再如,在广义相对论中,引力子是无 质量的;但是在许多修改引力理论中,引力子却允许有微小的质量,因此测量引力子质量上 限也可以用于区分引力理论。另一方面,由于引力波大多产生于极致密的天体的剧烈运动, 或者极早期宇宙的演化,而且引力波一旦产生,当其在宇宙中传播时几乎不发生任何相互作 用,因此它可以携带干净的天体物理和早期宇宙信号,为人类研究中子星内部结构、黑洞视 界附近物理、超新星爆发过程,以及极早期宇宙演化等提供了唯一的探针。除此之外,致密 双星作为引力波源,通过对引力波的振幅和相位观测可以精确确定波源的光度距离,因此,结合电磁手段确定的红移信息,这一类引力波波源可以作为标准铃声来探测宇宙的膨胀历史^[43]。基于这些原因,对各种波源的引力辐射的探测一直是国际上研究的重大课题。

在本文中,我们介绍了宇宙中存在的几类主要的引力波源:(1)两种连续性的引力波源, 即旋转的中子星和稳定的双星系统。对于前者,目前还没有发现该引力波信号,根据理论预 言,AdvLIGO 等地面激光干涉仪有可能探测到新生的中子星或者 X 射线双星系统中的中子 星所辐射的引力波;而对于后者,包括双白矮星系统,双中子星和黑洞系统,以及超大质量 双黑洞系统等的引力辐射,其中双白矮星系统的引力辐射很有可能被 LISA 等空间激光干涉 仪探测到,而大质量比的黑洞双星的引力波则是 LISA 等空间探测器的主要探测目标之一。 (2) 两类爆发式的引力波源,即超新星爆发和双星并合。前者虽然是一类强引力波源的候选 者,但是由于其事件率过低,很难期望在不久能够真正观测到;而后者则是目前的地面激光 干涉仪 (AdvLIGO 等) 和未来的空间激光干涉仪 (LISA 等) 最主要的探测目标,而目前发现 的引力波事件 GW150914, GW151226 和 GW170104 正是双黑洞并合所产生的引力波暴。(3) 两类主要的随机引力波背景,即天体物理过程所产生的引力波背景和宇宙暴胀时期产生的原 初引力波背景。对于前者,根据目前的观测事实,人们预言的太阳质量致密双星形成的引力 波背景最终可以被 AdvLIGO 和 AdvVirgo 等地面干涉仪探测到,另外超大质量双黑洞产生 的低频引力波背景预计可以在不久被脉冲星计时阵列探测到; 而对于后者, 主要通过宇宙微 波背景辐射的偏振功率谱来探测,这方面的实验进展非常快,预计在未来10年内应该可以取 得突破性的进展。这里需要指出的是,除了文中主要讨论的几种引力波源之外,还有其他的 很多引力波源也值得关注,例如中子星的 R 模不稳定性产生的引力波,宇宙弦的运动和碰撞 产生的引力波,早期宇宙中各种相变产生的引力波,黑洞的 Quasi-normal 模等,也可能产生 比较强的引力波,并在不久将被探测到。

总之,目前国际上各类引力波探测器都在参与各种观测中。在未来数年之内,我们期待 至少在如下的几个引力波探测方面取得新的突破:(1)通过以 AdvLIGO 为代表的第二代地面 激光干涉仪引力波探测器,首次探测到双中子星并合,或中子星-黑洞并合产生的引力波,并 且有可能对这一类波源实现引力波和电磁波的双通道观测。在这方面,我国的爱因斯坦探针 卫星项目预计可以在 X 射线波段参与此项观测。同时,通过和西澳大学合作,我国也准备筹 建一个第三代地面引力波天文台,即 8 km×8 km 的地面激光干涉仪,预计建成后也将参与 到此类观测。特别是,通过该探测器与其他地面干涉仪联合观测可以大大改进对波源位置的 限制,这对于引力波源的研究非常重要。(2)通过 PPTA,EPTA,NONAGrav 等脉冲星计 时阵列的数据积累,以及我国的 FAST 等新的高精度望远镜的加入,首次发现超大质量双黑 洞系统所产生的随机引力波背景。(3)通过以 BICEP2 为代表的地面微波背景辐射探测器的 细致观测,首次在极低频波段探测到宇宙原初引力波的信号。在这方面,我国的阿里微波背 景辐射项目将首次对北天区展开观测,预计能够参与到此项发现。

参考文献:

- [1] Will C M. Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University Press, 1993:
- [2] Weinberg S. Cosmology. Oxford: Oxford University Press, 2008: 1
- [3] Maggiore M. Gravitational Waves, Volumn 1: Theory and Experiments. Oxford: Oxford University Press, 2008: 1
- [4] LIGO Scientific Collaboration and Virgo Collaboration. PRL, 2016, 116: 061102
- [5] LIGO Scientific Collaboration and Virgo Collaboration. PRL, 2016, 116: 241103
- [6] Misner C W, Thorne K S, Wheeler J A. Gravitation. New York: W. H. Freeman and Company, 1973: 1
- [7] Poisson E, Will C. Gravity. Cambridge: Cambridge University Press, 2014: 1
- [8] Carroll S M. arXiv:gr-qc/9712019

3期

- [9] Creighton J D E, Anderson W G. Gravitational-Wave Physics and Astronomy. Singapore: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 1
- [10] Lasky P D. PASA, 2015, 32: 34
- [11] Horowitz C J, Kadau K. PRL, 2009, 102: 191102
- [12] LIGO Scientific Collaboration and Virgo Collaboration. ApJ, 2014, 785: 2
- [13] LIGO Scientific Collaboration and Virgo Collaboration. PRD, 2016, 94: 042002
- [14] Bildsten L. ApJ, 1989, 501: L89
- [15] Sathyaprakash B S, Schutz B F. Living Reviews in Relativity, 2009, 12: 2
- [16] Sesana A. PRL, 2016, 116: 231102
- [17] Barack L, Cutler C. PRD, 2004, 69: 082005
- [18] Jenet F A, Lommen A, Larson S L, Wen L. ApJ, 2004, 606: 799
- [19] Arzoumanian Z, et al. ApJ, 2014, 794: 2
- [20] Zhu X, et al. MNRAS, 2014, 444: 3709
- [21] Babak S, et al. MNRAS, 2015, 455: 1665
- [22] Schutz K, Ma C. MNRAS, 2016, 459: 1737
- [23] Hayama K, Kuroda T, Nakamura K, Yamada S. PRL, 2016, 116: 151102
- [24] Zhu X, Howell E, Blair D. MNRAS, 2010, 409: L132
- [25] LIGO Scientific Collaboration and Virgo Collaboration. arXiv:1605.01785
- [26] Martinez J G, et al. ApJ, 2015, 812: 143
- [27] Lazarus P, et al. arXiv:1608.08211
- [28] Kuroda K, Ni W, Pan W. IJMPD, 2015, 24: 1530031
- [29] Abadie J, et al. Classical and Quantum Gravity, 2010, 27: 173001
- [30] LIGO Scientific Collaboration and Virgo Collaboration. PRD, 2016, 93: 122003
- [31] LIGO Scientific Collaboration and Virgo Collaboration. arXiv:1606.04856
- $[32]\,$ Klein A, et al. PRD, 2016, 93: 024003
- [33] Roelofs G H A, Rau A, Marsh T R, Steeghs D, Groot P J, Nelemans G. ApJ, 2010, 711: L138
- [34] Zhu X, Howell E J, Blair D G, Zhu Z. MNRAS, 2013, 431: 882
- [35] LIGO Scientific Collaboration and Virgo Collaboration. arXiv:1602.03847
- [36] LIGO Scientific Collaboration and Virgo Collaboration. RPL, 2014, 113: 231101
- [37] LIGO Scientific Collaboration and Virgo Collaboration. PRD, 2015, 91: 022003
- [38] Shannon R M, et al. Science, 2015, 349: 1522
- [39] Baumann D. arXiv:0907.5424.
- [40] Zhao W, Huang Q. Classical and Quantum Gravity, 2011, 28: 235003
- [41] Liu X J, Zhao W, Zhang Y, Zhu Z. PRD, 2016, 93: 024031
- [42] BICEP2 and Keck Array Collaboration. PRL, 2016, 116: 031302

- [43] Schutz B. Nature, 1986, 323: 310

Gravitation Wave and Gravitational-wave Sources

ZHAO Wen¹, ZHANG Xing¹, LIU Xiao-jin¹, ZHANG Yang¹, WANG Yun-yong²,
ZHANG Fan², ZHAO Yu-hang², GUO Yue-fan², CHEN Yi-kang², AI Shun-ke²,
ZHU Zong-hong², WANG Xiao-ge^{3,4}, LEBIGOT Eric³, DU Zhi-hui³,
CAO Jun-wei³, QIAN Jin⁵, YIN Cong⁵, WANG Jian-bo⁵,
BLAIR David⁶, JU Li⁶, ZHAO Chun-nong⁶, WEN Lin-qing⁶

Department of Astronomy, University of Science and Technology of China, Hefei 230026, China;
 Department of Astronomy, Beijing Normal University, Beijing 100875, China;
 Tsinghua University, Beijing 100084, China;
 Michigan State University, East Lansing, MI 48821, USA 5. hinese Academy of Metrolog, Beijing 100013, China;
 University of Western Australia, WA 6009, Australia)

Abstract: The recent discovery of gravitational-wave burst GW150914 marks the coming of a new era of gravitational-wave astronomy, which provides a new window to study the physics in the strong gravitational fields, the extremely massive stars, extremely high energy processes and extremely early Universe. In this article, we introduce the basic characters of gravitational wave in Einstein's general relativity, their observational effects and main generation mechanisms, including the rotation of neutron stars, the evolution of binary systems, the spontaneous generation in the inflation universe. Different sources produce the gravitational waves at quite different frequencies, which can be detected by different methods. In the lowest frequency range ($f < 10^{-15}$ Hz), the detection is mainly dependent of the observation of B-mode polarization of cosmic microwave background radiation. In the middle frequency range $(10^{-9} < f < 10^{-6} \text{ Hz})$, one detects gravitational waves by analyzing the timing residuals of millisecond second pulsars. In the high frequency range $(10^{-4} < f < 10^4 \text{ Hz})$, it can be detected by space-based and ground-based laser interferometers. In particular, we focus on the main features, detection methods, detection status and the future prospects for several important sources, including the continuous sources (e.g. spinning neutron stars, stable binary systems), the burst sources (e.g. supernovae, the mergence of binary system), and the stochastic backgrounds generated by the astrophysical and cosmological process. In addition, we forecast the potential breakthrough processes in gravitational-wave astronomy in the near future, and the Chinese projects which might involve in these discoveries.

Key words: gravitational wave; neutron star; compact binary system; supernova; inflation