Vol. 3, No. 1
Jan.-March, 1985

宇宙微波激射源中的偏振辐射

周 **震 浦** (中国科学院紫金山天文台)

提 要

本文评述了二十年来在宇宙微波激射(脉泽, maser)源偏振辐射研究中的重要成果, 其中包括主要观测结论和各种微波激射偏振辐射的理论。

一、引言

早期的微波激射源偏振辐射研究主要集中在 OH 源上。而对于 OH 微波激射源, 最感兴趣的则是与 H II 区成协的那些对象(属 I 类 OH 源)。观测工作是广泛的,除去单天线观测外,还进行了干涉仪和甚长基线干涉仪等大量的观测研究。除去基态外,在 OH 分子的一些 激发态微波激射辐射中,亦观测到了强的偏振辐射。在这些观测的基础上,发展起一些微波激射偏振辐射的理论。特别是 OH 微波激射偏振辐射塞曼谱的证认,丰富了人们关于微波激射区磁场的知识。由于这些区域多是活动着的恒星形成区,因此也推动了恒星形成区的研究。

和 OH 分子不同, H_2O 和 SiO 是非顺磁分子,它们的偏振研究是最近几年的事。 这一方面是由于理论的预言推动了这些工作的开展,另一方面也是由于观测技术的进步,使这些分子偏振辐射的观测成为可能。目前 H_2O 和 SiO 微波激射偏振辐射的研究得到了普遍的重视。

本文的目的在于评述到目前为止关于微波激射偏振辐射方面的知识,包括观测结论和理论探讨两个方面的问题。

二、观测事实

1. OH 微波激射源

与 H II 区成协的 OH 微波激射源,其辐射有强的圆偏振和强的线偏振,但圆偏振更常见。不断有关于在 OH 微波激射偏振辐射谱中找寻到塞曼对的报道^[1-4]。当然,仅在谱中找出塞曼对是不充分的,只有当于涉仪观测证实了它们的确来自同一空间区域才行^[5-8]。表 1 所 列 是 根 据 OH

微波激射辐射谱所证认出的塞曼对^[1]。对表 1 中的两个典型 源 NGC 6334 N 和 W 3, Knowles^[8] 在 6,035 MHz 上的干涉仪观测结果是:

NGC6334N -10.74 km/s 塞曼对 相距<01.01

W3 - 43.46 km/s 塞曼对 相距~1"

表 1 根据 OH 微波激射辐射谱证认的塞曼对

源	跃迁(MHz)	特征速度(km/s)	中心速度(km/s)	磁场(mG)				
W 3	6,030	-43.7(L) -43.2(R)	- 43.45	6.35				
	6,035	$\left.\begin{array}{l} -43.65(L) \\ -43.27(R) \end{array}\right\}$	- 43.46	6.75				
	1,665	$-45.5(L) \\ -41.7(R)$	- 43.60	6.45				
	1,667	$\left. \begin{array}{l} -44.75(L) \\ -42.33(R) \end{array} \right\}$	- 43.54	6.85				
	1,720	$-44.1(L) \\ -43.4(R)$	~43.75	6.2				
NGC 6334 N	6,030	$\begin{bmatrix} -11.08 \\ -10.8 \end{bmatrix}^*$	- 10.94	3.6				
	6,035	$\left.\begin{array}{l} -10.88(R) \\ -10.60(L) \end{array}\right\}$	- 10.74	5.0				
	1,665	$\left\{\begin{array}{c} -12.36(R) \\ -8.94(L) \end{array}\right\}$	- 10.65	5.8				
	1,665	$\left. \begin{array}{l} -12.18(R) \\ -8.94(L) \end{array} \right\}$	- 10.56	5.5				
	1,667	$\left.\begin{array}{l} -12.00(R) \\ -10.02(L) \end{array}\right\}$	- 11.01	5.6				
	1,720	$\left. \begin{array}{l} -11.09(\mathbf{R}) \\ -10.19(\mathbf{L}) \end{array} \right\}$	- 10.64	8.0				

^{*}基于线偏振辐射。

很明显,由谱证认的 -43.46 km/s 塞曼对是不正确的。通常 OH 子源的最 小 分 离 约 0.1,估计子源的大小亦为 0.1,但 W3 的 -43.65 km/s(L)和 -43.27 km/s(R)两 特 征 空间分离~1",当然不可能 构 成 塞 曼 对。 最 杰 出 的塞曼图证认工作是 Moran 等作 出 的[9],他们在 W3(OH)的 6,035 MHz($^2II_{3/2}$ I=5/2 $F=3\rightarrow3$ 跃迁) 微波激射辐射中,一次就证认出 12 个塞曼对来,并用干涉仪取得了这些子源的空间分布图(见表 2 和图 1、2)。

图 1 为 W3(OH) 源 OH 6,035MHz 微波激射辐射谱图,图 2 为 W3(OH)源 OH 6,035 MHz 微波激射分量空间分布图。根据十对有 $\Delta\theta$ 数据的平均,得到 0.13 的平均塞曼对分量间距值。 Moran 等认为,平均间距偏大的原因,是在左右旋圆偏振子源位置间有一个系统的偏差引起的。如果所有左旋圆偏振子源位置,在赤经方向移动 + 0.11,在赤纬方向移动 - 0.105,则平均间距为 0.108。那么对这十二个塞曼对的证认就成立了。

Palmer 和 Zuckerman^[10]在对四个源(W49、W75、W 24 和 W 11)OH 微波激射偏振辐射的研

- 42.6 L

-42.3 R

-42.3 L

-41.9 R

11

12

9

25

9

6

			扣 对	位 置			~ \ l \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
塞曼对	速度(km/s)	流量 s(Jy)	θ_{x}''	$\theta_{\mathbf{y}}''$	Δθ''	$\Delta v(\text{km/s})$	磁场(mG)
1	- 48.9L	~1	+1.31	+0.86 \	0.27	0.27 0.1	2
1	-48.8 R	~1	+1.50	+0.66			-
n	-48.3 L	3	+0.05	+0.38 }	0.05	0.5	9
2	-47.8 R	4	+0.19	+0.40	0.03	0.0	3
3	-47.3 L	5	••••	}		0.5	9
ა	-46.8 R	5	-0.70	+0.51		0.3	
,	-46.7 L	4	+0.12	+0.43 \	0.11	0.5	9
4	-46.2 R 4 $+0.21$ +	+0.38	0.11	0.0	·		
-	-45.3 L	6	-0.08	-0.01 \	0.08	0.08 0.3	5
5	-45.0 R	19	0.00	0.00 }		0.5	Ü
6	-45.0 L	14	+0.08	+0.49 \	0.14	0.4	7
U	-44.6 R	6	+0.20	+0.41	V•14	0.4	•
7	-44.6 L	16	-0.40	-1.34	0.30	0.5	9
•	-44.1 R	17	-0.15	-1.51∫	0.30	0.0	ד
8	-43.6 L	30	0.00	+0.39 \	0.00	0.2	4
0	-43.4 R	15	+0.06	+0.37	0.06	0.2	**
9	-43.3 L	62	+0.02	-0.79 \	0.05	0.3	7
J	- 43.0 R	82	+0.07	-0.80∫	0.00	0.0	•
10	-43.0 L	35	+0.13	+0.27	0.00	0.4	7
10	-42.6 R	24	+0.21	+0.27	0.08	0.4	•

表 2 W3(OH)中 6035 MHz上证认出的塞曼对位置和磁场

究中,总共发现55个特征,有37个是圆偏振的,只有一个是线偏振的,圆偏振特征数远远大于线偏振的,左右圆偏振特征数也不相等。这四个源中,OH1,665 MHz 微波激射辐射最强。有两个源观测了OH1,667 MHz 的辐射,其强度都比OH1,612 MHz和OH1,720 MHz微波激射辐射弱。

+0.28 }

+0.29

+0.30

0.15

0.3

0.4

5

7

+0.09

+0.24

• • • • • •

+0.25

Sullivan 和 Kersthelt^[11]研究了 OH 微波激射辐射的变化。研究包括 13 个源(11 个 H II 区, 2 个 IR 星), 145 个速度特征。在月的时间尺度上,有总强度变化的特征占总数 的 1/4,但有圆偏振辐射强度变化的仅占 1/10。线偏振特征极少,但相对讲其强度变化比圆偏振更频 繁。主 线 辐射的变化时间尺度更短些,也更激烈些,但辅线变化的相对特征数更多些。在同一谱线轮廓中,不同特征变化之间有时能看到相关,但邻近的特征之间常常是不相关的。在 W 49 中可看到,光度大的特征似乎变化较少,圆偏振也小些。

Palmer 和 Zuckerman^[10]也报道了 OH 偏振特征的变化是小的。但是, Lo 和 Bechis^[12]报道了 V 1057 Cyg OH 1,720 MHz 强圆偏振辐射,在 5 个月中,强度下降到了原来的 1/5。

除去少数例外,恒星 OH 微波激射源是不偏振的。目前已知的偏振源有红超巨星以及 W Hya 和 U Ori,它们有强的圆偏振辐射,并发现了偏振辐射中的塞曼对[7],[13]。恒星 OH 微波激射源中

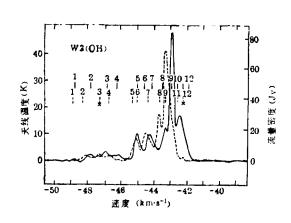


图 1 W3(OH) OH² $\Pi_{3/2}$ J = 5/2 $F = 3 \rightarrow 3$ 6,035 MHz 微波激射跃迁辐射谱。右旋圆偏振为实线, 左旋圆偏振为虚线。有十二个塞曼对。 左旋圆偏振的第 3 和第 12 两 分量 (用 X表示) 在 VLBI 观测时未检测到。

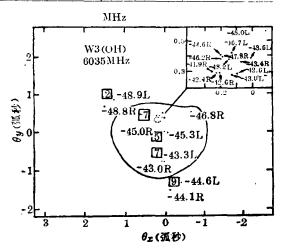


图 2 W3(OH) OH 6,035 MHz 微波激射辐射 子源相对位置图。子源的 LSR 速度(km/s) 为圆偏振方向均标在图中。方框中的数字 和估计的磁场强度(mG)。 图中还画出了 6 cm 2300 K 射电连续辐射等强度线。该 图的绝对参考点在(1950): 02 b23m16.42 ±05.03。61°38′57″5±0″.2。

缺少偏振辐射的原因, 通常认为是由于恒星周围磁场较弱的缘故。

2. H₂O 微波激射源

1973 年 Dickinson 等[14]报道了 19 颗红外星的 H_2O 观测结果,未发现 有 偏 振 辐射。但是,1975 年 Bologna 等[15]在 24 个与 H II 区成协的 H_2O 微波激射源中,发现其中约 25%的源, 至少包含了一个线偏振的子源,未发现有圆偏振的辐射。并发现 W 75 S 中的线偏振 辐 射有强度的变化,但方位角不变。最强线偏振度可达 42%。

1978 年,Knowles 和 Batchelor^[16]报导了类似的结果,并发现了两个红外星的 H_2O 微波激射辐射中有线偏振,它们是 L_2 Pup 和 VY CMa,但它们的线偏振度都极小,仅 2—3%。

3. SiO 微波激射源

最近才对 SiO 微波激射的偏振辐射给出了 肯定 的 结论。1979 年,Troland 等 $^{(17)}$ 在86 GHz (v=1,J=2-1)SiO 微波激射辐射的研究中,检测到了 16 个源的线偏振辐射, 排除了存在圆偏振辐射的可能性(虽然在 W Hya 上记录到了圆偏振辐射信号,但由于它 的 线 偏 振辐射极强,因此 Troland 等认为,这个信号来源是由于偏振仪 的 圆 偏振的寄生效应)。由于灵敏度限制, 仅有 9 个源测出了线偏振的特征参数,全都有 $T_{\Delta}* \ge 1.6$ K,其中有 7 个源线偏振度 > 15%。U Her 有最大线偏振度,可达 55%。

至于 OMC-1,则既无圆偏振辐射,亦无线偏振辐射。虽然在测量中,记录到了 整个谱线轮廓上均匀的小偏振,但这可能是由于各种测量误差造成的。

由此可得到结论,86 GHz 的恒星 SiO 微波激射的偏振特征是,有>15%的线偏振,有小的或根本没有圆偏振。还没有看到来自恒星 43 GHz SiO 偏振辐射的报道。对唯一的一个来自分子云 OMC-1 的 SiO 微波激射辐射,未发现过有任何偏振的迹象。

1982 年,Clark 等[19]对 R Cas 的 SiO 86 GHz($\nu = 1$, J = 2-1)微波激射辐射的偏振特征进行了详细的研究。发现有几个线偏振分量($\sim 30\%$ 线偏振度),偏振角有变化,特别是在变星 0.96 相时有非常大的变化。但未发现变化有与变星周期相关的迹象。

4. 小结

关于 OH、H₂O 和 SiO 三种分子微波激射辐射的偏振特征,现综合于表 3 中。

		ОН	J	H ₂ O	SiO	
	IR	ΗI	IR	ΗД	IR	H II
线偏振	*	0100%	_**	0-50%	0-100%	0-20%
圆偏振	-*	0-100%			_	_
典型源		W3(OH) NGC 6334 N		Ori A W 75 S	R Cas	Ori A

表 3 宇宙强微波激射源辐射的偏振特征

三、有 关 理 论

1. 塞曼分裂

首先是 OH 分子的与观测有关的正常塞曼分裂^[2],包括 $^2\Pi_{1/2}$ J=1/2,以及 $^2\Pi_{3/2}$ J=3/2,5/2 等几种态。

OH 分子基态电子态是 Π 态。考虑了电子自旋与角动量的耦合形成了 两个能级系列: $^2\Pi_{1/2}$ 和 $^2\Pi_{3/2}$ 。继之,每一能级又因电子角动量与转动角动量间的耦合形成 Λ 双线分裂。再考虑到氢核自旋与总电子角动量(不包括核自旋)间的耦合,形成超精细结构分裂。因此每一条能级分裂成四条。在有磁场时,每一条能级又进一步分裂成 2F+1 条磁亚能级,各磁亚能级对原能级的偏离为

$$\Delta W = h \Delta v = -\mu_{\rm n} g_I \frac{M_{\rm F} B}{2 F(F+1)} [I(I+1) + F(F+1) - J(J+1)] - \mu_{\rm 0} g_J \frac{M_{\rm F} B}{2 F(F+1)} [J(J+1) + F(F+1) - I(I+1)],$$

这儿 μ_n 是核磁子, μ_0 是 Bohr 磁子, $\mu_n = \mu_0/1836$; $g_1 \sim g_1 \sim 1$;J 为包括转动、但不包括核自旋的角动量量子数;F 是总角动量;I 是核自旋; M_F 是 F 在磁场方向上的投影,取值为 F ,F F+1 ,……,F+1 ,F ,F 是磁场强度。对于 $^2II_{3/2}$ 态, ΔW 中的第一项可忽略。但对 $^2II_{1/2}$ 态,由于自旋磁矩和电子磁矩的轨道分量方向相反,因而大部分抵消了,使核自旋分量成了主要贡献。结果,其分裂约为 $^2II_{3/2}$ 态的 10^{-3} 倍。

OH 分子微波激射线的塞曼分裂图是由磁亚能级间的跃迁产生的。允许的跃 迁 为 $\Delta M_F = 0(\pi)$ 分量)和 $\Delta M_F = \pm 1(\sigma)$ 分量)。 $^2\Pi_{3/2}$ J = 3/2 和 J = 5/2 态的塞曼图示于图 3。当磁场平行于视线方向时,可见到左旋和右旋圆偏振的 σ 分量;当磁场垂直于视线方向时, π 分量是线偏振的,偏振方向平行于磁场; σ 分量也是线偏振的,偏振方向垂直于磁场。各种 σ 和 π 分量的强度可用表 4 来估计 $^{(20)}$,相对强度已示于图 3 中。

^{*} 超巨星以及 W Hya、U Ori 等例外。

^{**} VY CMa、L, Pup 等例外。

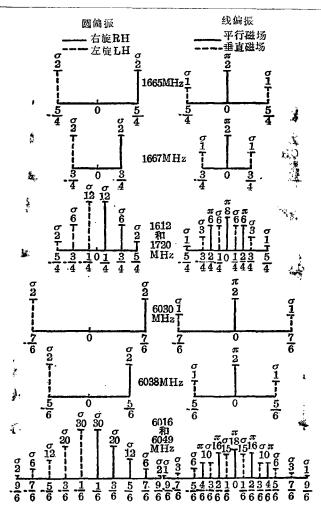


图 3 OH $^{2}\Pi_{3/2}$ J=3/2 和 J=5/2 四线塞曼分裂图。频率分裂的单位为 $g_{3}\mu_{0}/h$,对 J=3/2 为 1.31 MHzG⁻¹,对 J=5/2 为 0.679 MHzG⁻¹。对每一跃迁已示出相对强度。左侧为磁场平行于视线,右侧为磁场垂直于视线。

通常观测有兴趣 的 OH 跃 迁 塞 曼 分 裂 列 于 表 5 。该 表 是 对 σ 分量的。 ${}^2\Pi_{3/2}$ 的 g_1 值由 Radford ${}^{(21)}$ 给出,对 J=3/2、5/2、7/2 分别是 0.935、0.485 和 0.325。辅线有许多 σ 分量,表中列出的塞曼分裂是由这些分量强度加权平均的分裂值。表 5 中还列出了用速度表示的分裂值。表 6 给出了 OH 基态的塞曼分裂详细数据 ${}^{(22)}$ 。

表 4 塞曼分量的相对强度(J',M')为 J,M 中大者)

		$\Delta J = +1$	$\Delta J = 0$	$\Delta J = -1$
与磁场平行	$\Delta M = 0$	J'2 – M²	M²	$J^{\prime 2}-M^2$
与磁场垂直	$\Delta M = +1$	(J'+M'-1)(J'+M')	(J+M')(J-M'+1)	(J'-M')(J'-M'+1)
J MAZO EL EL	$\Delta M = -1$	(J'-M')(J'-M'+1)	(J+M')(J-M'+1)	(J'+M')(J'+M'-1)

夢	5	OH	分子	塞曼	谱(σ	分量)
---	---	----	----	----	-------------	-----

ner.	·	47 +47 (MII-)	左右圆偏振间的塞曼分裂	
跃 迁		频率(MHz)	MHz G ⁻¹	kms-1 G-1
${}^{2}\Pi_{1/2} J = 1/2$	F = 0-1	4,660.2	~10-3	~10-2
	1-1	4,750.6	$\sim 10^{-3}$	$\sim 10^{-2}$
	1-0	4,765.5	$\sim 10^{-3}$	$\sim 10^{-2}$
$^{2}\Pi_{3/2}J=3/2$	F = 1-2	1,612.2	1.308	236
	1-1	1,665.4	3.270	590
	2-2	1,667.3	1.964	354
	2-1	1,720.5	1.308	236
$^{2}\Pi_{3/2}J = 5/2$	F = 2-3	6,016.7	0.678	33.8
	2-2	6,030.7	1.582	79.0
	3-3	6,035.0	1.132	56.4
	3-2	6,049.0	0.678	33.8

表 6 OH 分子基态 A 双线跃迁塞曼谱

跃 迁	频率(MHz)	$\Delta M_{ m F}$	单位磁场强度时频率的改变值 GHz T-1			医值
4→1	1,720	+ 1	- 3.249	-9.	814	- 16.379
		- 1	+ 16.379	+9.	814	+ 3.249
4 →2	1,667	+ 1	-9.800	-9.814	-9.828	- 9.841
		- 1	+9.841	+9.828	+9.814	+ 9.800
3→1	1,665	+ 1		-16.379	- 16.357	
		- 1		+16.357	+ 16.379	
3→2	1,612	+1	- 3.298	-9.	828	- 16.357
		~ 1	+ 16.357	+9.	828	+ 3.298

非顺磁分子的 H_2O 和 SiO 则不同于顺磁分子 OH,它们的基态为 $^1\Sigma$ 态。 其 磁 矩近似等于核 磁矩,即为电子磁矩的 1/1,000。因此,在这些分子中,塞曼效应十分小。此时, ΔW 式中的 $\mu_0 g_1$ 和 $\mu_n g_1$ 同量级,因此两项都是重要的。即使在这些情况下,根据 Goldreich等 $[^{23}]$ 的理论,当满足某些条件时,这些分子仍能发出可被检测的线偏振辐射。观测证实了这一结论,在 H_2O 和 SiO 微波 激射辐射中检测到了线偏振,但没有检测到圆偏振 $[^{24}]$ 。

理论和观测都说明了微波激射辐射的塞曼分裂是可以检测的,亦肯定了磁场的作用,并估计其量级为 1—10 mG。难以获得完全的塞曼谱是可以理解的。在天文环境下,完整的塞曼分量将受到热的和整体运动的作用而加宽。如果谱线加宽到足以与塞曼分裂数值相比拟,则将观测不到偏振。图 4 所示为一个典型的分子云^[2],沿着视线方向上的辐射,受到不同整体运动和磁场的影响。如果没有微波激射辐射,我们将得到(a)谱。但若有不饱和的微波激射辐射存在时, 我们将得到(b)谱。在(a)谱中左右旋圆偏振之间仅有小的差异,但在(b)谱中,这种差异被指数地放大了,从而获得强的偏振信号。比如 OH 微波激射增益指数在 20—30 之间,因此左右旋圆偏振之间的 0.2 的微小差异,在微波激射谱上将出现 e⁴—e⁶ 倍的差异,即 50—400 倍的差异。 并且,左右圆偏振已无法证认为是属同一个塞曼对分裂了。再考虑到沿着视线方向抽运率亦会有变化,这就更加强了左右旋圆偏振之间的差异。

均匀的有磁场的介质不能区分左右旋圆偏振辐射,从而导致相等强度的结论。但是,在与HI区成协的 OH 微波激射源中,有非常强的单向圆偏振(偏振度可达 100%)。 有些左右旋圆偏振微波激射子源彼此十分接近,从而可认为属于同一塞曼对。但是,亦有一些远离其他子源的单向圆偏振子源。

对这种现象的一个巧妙的解释是滤波器机制 $^{[26],[26]}$ 。其基本思想是,当辐射跃迁频率为 ν ,介质沿视线运动的速度为 ν ,速度梯度为 $\frac{\partial \nu}{\partial x}$,相距 $\frac{\partial x}{\partial x}$ 的两点之间的 Doppler 频

$$\frac{v}{c} - \frac{\partial v}{\partial x} \delta x$$

式中c为光速。如果磁场B亦沿着视线方向, δx 距离上的塞曼分裂的改变为

$$\pm \gamma_i \frac{\partial B}{\partial x} \delta x$$
,

γ_i 为单位磁场强度引起的频率 改变, 对 **OH** 分子 4 双线四个跃迁的值列于表 7 中。当

$$\frac{v}{c} - \frac{\partial v}{\partial x} = \gamma_i - \frac{\partial B}{\partial x}$$

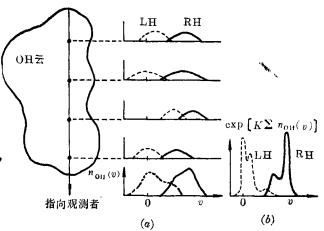


图 4 通过 OH 分子云观测的辐射谱。分子分布与速度有关: $n_{OH}(\nu)$, $N_{OH} = \sum n_{OH}(\nu)$, $T_B(\nu)$ 谱为指数形式: $\exp[\text{const} \times \sum n_{OH}(\nu)]$ 。 左右圆偏振分别用实线和虚线表示。

时, Doppler 频移和塞曼频移相抵消。此时, 可能会消除左旋的或右旋的一个圆偏振辐射,保留下一种圆偏振方向的辐射。

频率(MHz)	$v/\gamma c (10^{-10} \text{ Tsm}^{-1})$		
 1,612	±16.31	±5.47	±3.29
1,665		均)	
1,667		±5.66(四值平	均)
1,720	±17.66	± 5.85	± 3.50

表 7 OH 分子基态跃迁的磁亚能级 $\nu/\gamma c$ 因子值

虽然初看起来,速度和磁场梯度间的相关太有点偶然了,但实际上,星际空间的电离度足以 保证磁场的冻结,导致运动和磁场的耦合。

实际上,在某些源中观测到的线偏振辐射的事实,仅意味着其中有某种特别的方向,它垂直于视线。磁场是定义这种方向的明显方法,但并不是唯一的。如果微波激射分子与其他光子或粒子流相互作用而反转,流的方向可能提供一个磁亚能级的排列取向,导致偏振的辐射。这包括定向的辐射流^{[27],[28]}或电子流^[28]与分子的相互作用,提供了分子取齐与偶极辐射。在这些情况中,偏振都是与反转过程本身相联系的。

2. 微波激射辐射的偏振理论

Goldreich 是微波激射辐射偏振理论的奠基人之一,早在 1973 年^[23],他 和 他 的合作者就从物理学出发,比较严格地探讨了这个问题。

首先,他们给出了决定天体微波激射中偏振辐射转移的方程,并发现,为了确定辐射的偏振,

源中的磁场和等离子体起了重要作用。偏振的特性取决于微波激射能级的衰变率 Γ ,受激发射率 R,塞曼分裂 $g\Omega$ 和放大辐射的带宽 $\Delta\omega$ 等参数值的相对大小。

对不饱和微波激射($R < \Gamma$),如果 $g\Omega > \Delta \omega$,且单位增益长度上的 Faraday 旋转是小的,微波激射将放大塞曼图。如果 $g\Omega > \Delta \omega$,但 Faraday 旋转是大的,那么 σ 分量是圆偏振的, π 分量是不偏振的。在上述两种情况下, σ 分量与 π 分量的相对增益取决于传播方向和磁场之间的夹角。如果 $g\Omega < \Delta \omega$,则无偏振辐射。

对饱和微波激射($R > \Gamma$),如果($g\Omega \sin \theta$) $^2 > R\Gamma(\theta$ 为磁场与视线的夹角),磁场将影响偏振。如果 Faraday 旋转在整个饱和放大区上超过了一个弧度左右,将有重要影响; 如果没有 Faraday 旋转,当($g\Omega \sin \theta$) $^2/R\Gamma$ 从 0 变到 ∞ (注意, $g\Omega < R$),则线偏振度将从 0 变到 1/3。对 $R < g\Omega < \Delta \omega$,亦有部分线偏振辐射。此时的部分线偏振为:

$$Q/I = -1$$

$$\sin^2\theta < \frac{1}{3},$$

$$Q/I = (3\sin^2\theta - 2)/(3\sin^2\theta)$$

$$\sin^2\theta > \frac{1}{3}.$$

对 $g\Omega > \Delta\omega$, 微波激射放大塞曼图。对所有 θ 值, σ 和 π 分量有相似的强度, 从 而 不同于不饱和放大的情况。如果 Faraday 旋转是重要的,线偏振将消失。 $g\Omega > \Delta\omega$ 时, σ 分量将是圆偏振的, π 分量是不偏振的。

对离开谐振频率的传输,有一个与偏离频率有关的线偏振平面的旋转。当分子跃迁不饱和时,这个效应十分重要。

Goldreich 等的偏振理论的结论概括于表 8 中。

Faraday 效应大 Faraday 效应小 不 饱 和 $gQ \geqslant \Delta \omega$ $gQ \geqslant \Delta \omega$ 財 $(R < \Gamma)$ 放大塞曼图 σ一圆偏振) **π一无偏振** $gQ<\Delta o$ 时 无偏振 gQ<R 时 $gQ>\Delta\omega$ 时 $(R > \Gamma)$ σ--圆偏振)** 线偏振 度 0- $R < g\Omega < \Delta\omega$ 部分线偏振 $gQ > \Delta \omega$ 放大塞曼图

表 8 Goldreich 等的偏振理论结论

 H_2O 分子微波激射的 g 因子约为 8×10^{-4} 。因此,除非磁场超过 40 G,否则塞曼 分裂将小于微波激射线宽(典型线宽为 $10^{\circ}Hz$)。因此,在 H_2O 分子微波激射辐射中未观测到圆偏振是可以理解的。某些 H_2O 微波激射源(如 Ori A)观测到高度线偏振辐射表明,这些微波激射是饱和的,并且,

σ与π分量强度比与磁场和视线的夹角有关。

^{**} σ与π分量有几乎相同的强度。

在该源中存在比较强的磁场。当 R 被取为 50 S^{-1} 时^[30],磁场至少为 10^{-2} G 量级。

OH 微波激射跃迁所涉及能级的 g 因子,除去 $2\Pi_{1/2}$ J=1/2 F=1-0 跃迁外(其 g 因子很小),均为 1 的量级。在 OH 基态微波激射线上观测到圆偏振表明,在源中存在 10^{-3} G 量 级 的 磁场(微波激射线典型线宽为 3×10^{3} Hz)。更大的磁场因在 OH 激态微波激射上观测到 圆偏 振而被提出来了。用塞曼分裂来解释圆偏振辐射,还因在 $^{2}\Pi_{1/2}$ J=1/2 F=1-0 跃迁上未观测到圆偏振辐射而得到支持。

在许多有大量圆偏振辐射特征的源中,线偏振非常小。在这些源中,有些线是 100%圆偏振的。小的线偏振和大的圆偏振辐射表明,在这些源中,Faraday 旋转效应是重要 的。 对不饱和放大,这要求每单位增益长度上至少有几个弧度的旋转。但对饱和源的要求弱得多,在穿过饱和放大区时能有几个弧度的旋转就行了。因为高亮度温度,OH 微波激 射 至少是 部分饱和的 $^{[30]}$, 这对线偏振辐射解释更有利些。取饱和放大区长度为 10^2 AU 和 $B=10^{-2}$ G,要求电子密度 $N_e=3$ cm $^{-3}$ 时,才能做到整个饱和区上 1 个弧度的旋转(基态 OH 微波激射线)。对有比较大的线偏振 与圆偏振的区域, N_e 或许更小些。

OH 微波激射源的线偏振辐射有一个有趣的特征,其方位角常常有快速变化,甚至在一条很窄的线上亦然。Manchester 等 [31]对 OH 源观测的结论是:Stokes Q、U 参数轮廓常有非常窄的特征,它们不能用 1 kHz 滤波器分离,尽管此时圆偏振轮廓已被分离开了。用偏离 谐 振 频率时辐射在传输时会引起偏振面的旋转,可以解释这 些 观 测 现 象。比如,对 g=1, $\cos\theta=1$, $B=10^{-2}$ G, $u/c=2\times10^{-6}$, $f_0=1.7\times10^{6}$ Hz, $f-f_0=2\times10^{4}$ Hz(相当于偏离谐振频率 4 km/s),

$$\Delta \phi = \left(\frac{u\omega}{c}\right) \frac{g\Omega \cos\theta}{(\omega - \omega_0)^2} = 2.5 \times 10^{-1} \frac{\text{Mg}}{\text{Hg}},$$
$$\left|\frac{d\Delta \phi}{df}\right| = 2.5 \times 10^{-2} \frac{\text{Mg}}{\text{Hg} \cdot \text{kHz}},$$

因此, 在光深为 40 的传输长度上, 每 1 kHz 上将发生 1 个弧度的微分旋转。

Goldreich 等的上述理论还有许多无法解释的观测事实:

- ① 在有较强圆偏振辐射的源上,缺少完整的塞曼图。 可能的解释 是,由于源中存在磁场和 速度梯度^[25]。
- ② OH 微波激射源辐射没有以线偏振为主的。虽然当 $\Gamma \ll R \ll g\Omega \ll \Delta \omega$ 时,按 Goldreich 的 理 论,应该有这样的情况。如果 OH 微波激射是不饱和的,当然允许不出现以线偏振为主的情况。但 是,这不是非常满意的解答。因为的确存在一个源(W42)是线偏振为 主 的[32],而 且此微波激射源是饱和的。但仅有一个源是十分不够的。

在观测中,OH 微波激射源很少有明显的塞曼图,也缺少线偏振辐射,这表明了 Goldreich 等在转移方程的推导中有处理不当的地方。其中最可能的原因,是他们假设了 密 度矩阵元 $\rho_{am}a_n$ 和 $\rho_{bb}(a_n$ 指上能级的磁亚能级, b 指下能级的磁亚能级, 由于取 $F_b=0$,所以下能级只有一条)是常数。把俘获效应亦包含到转移方程中去的话,有可能解决这个问题。比如, 由于俘获效应, $F_a=1$ 的磁亚能级之间有不同的分布,从而减少了线偏振的增长。

在 OH 微波激射源(除去许多源中的弱特征)和 H₂O 微波激射源(除去 Ori A)缺少线偏振辐射,可能是由于交叉弛豫过程引起的^{[37],[38],[40]}。这过程包括了微波激射能 级 与邻近转动能级之间的

远红外俘获,以及后随的级联跃迁,引起了磁亚能级分布的快速平衡。Goldreich 等详细讨论了在一个 F=1-0 的假想的情况中,具有一个 F=0 的激态,F=0 微波激射能级以远红外俘获被耦合到激态 F=0 去。 设交叉弛豫率是激发这个远红外能级速率的 1/3。 当受激发射小于交叉弛豫率时,除非辐射是垂直于磁场传输的, 否则 π 分量将被抑制。 而且, 如果两个 σ 分量中的一个变得比另一个稍强时,将会以一个常因子维持更强的局面。

当受激发射率变得比交叉弛豫更大时,可期得到相当大 的 线 偏振辐射。在 H_2O 微波激射中未见到圆偏振,这是因为 H_2O 分子磁矩很小的缘故,此时塞曼分裂小于 Doppler 宽度。通常观测缺少线偏振是由于快速的交叉弛豫。但在 Ori A 中见到了线偏振^[47],这可能 是 由于 受激发射率稍大于交叉弛豫的缘故(Goldreich 等^[40]估计,交叉弛豫率约 $1 \, \text{s}^{-1}$ 。根据热点 模 型, 真实尺寸与视尺寸之比为 40)。

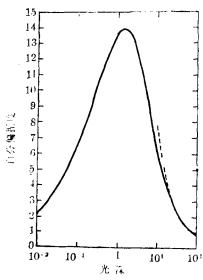


图 5 作为光深的函数的线偏振度 曲线。实线表示计算结果,虚线为渐近解。参数选取: $A_1 = A_2 = 0$, $A_3 = 1 \times 10^{-11} \text{s}^{-1}$, $\lambda_r = \text{c}/\nu_r = 0.3$ cm (波长), (C + 3C')/A = 0.212(A 为自发跃迁几率,C 为上下能级间的碰撞跃迁几率,C' 为上能级磁亚能级间的碰撞跃迁几率,例中的下能级仅一条磁亚能级),T = 10 K(分子云温度), $T_{BB} = 2.7$ K(背景辐射温度), $\theta = \frac{\pi}{2}$ — $\pi \lambda = 0$ (即辐射方向在 \hat{J} 方向上)。

八十年代初, Goldreich 和 Kylafis 在连续发表的两篇文章中,讨论了在强磁场和弱磁场情况下的线偏振问题^{[42],[43]},并考虑了磁亚能级间的弛豫。

强磁场时,即使分子的磁矩为核磁矩量级,塞曼分裂仍 比碰撞率、自发和受激辐射跃迁率大得多。星际分子毫米波 谱线通常属此类情况。

但亚毫米波线发生在更高密度区,自发辐射和碰撞速率比塞曼分裂大得多,因此应考虑为弱场情况。

在两种情况下,塞曼分裂都比 Doppler 宽度 $\Delta\omega$ 小得多,因此没有圆偏振(即使塞曼分裂大于热 Doppler 宽度,计算对线偏振仍有效)。

Goldreich 等给出了一个这样的例子,分子云作 一维塌缩,塌缩方向和磁场都沿着 \hat{k} ,观测方向在(\hat{k} , \hat{i})平面上。因此表示膨胀或塌缩的参数 $\Lambda_1 = \Lambda_2 = 0$, $\Lambda_3 \neq 0$ 。由于 $\Lambda_1 = \Lambda_2$,所以 $\rho_{+-} = 0$,因此本例对强磁场和弱磁场是无区别的。此处偏振度正比于 $\sin^2\theta$,最大值为 14%。计算结果见图 5。

由于观测线宽为热线宽的几倍,线中的不同部分来自不同的源区,因此,偏振的大小,甚至偏振方向,在线上都有变化。

在分析中,假设了源中的系统速度变化值远大于分子的 热速度,这对偏振的存在不是必要的。在静止的介质中,如 果光深不是各向同性的话,也会产生偏振。

此外, $Heer^{[33]}$ 认为,OH 微波激射的圆偏振是由于相反圆偏振模之间的非线性竞争,就如同在实验室激光中看到的情况一样。在激光中,圆偏振的增长表明,至少对 $\Delta F = 0$ 的

跃迁,饱和效应能导致圆偏振的自发增长。但是,这一结论对天体微波激射的应用^{[33],[34]}受到了Bender^[35]和 Litvak^[36]的批评。 这些批评是 基于这样的事实,即他们得到的结果仅对单色信号成

立。Bender 指出,当湍流建立后($R < \Gamma$),信号是宽带的,圆偏振将受到抑制。Litvak 对这一过程的研究不仅局限于湍流,但同样证实了Bender 的结论。Litvak 还指出,当 $R > \Delta \omega$ 时可 得到类似于单色信号的结果。但是,由于我们总是有 $R \ll \Delta \omega$,因此,这不适用于天体微波激射。

Litvak 建议下变频可能对一个圆偏振超过另一个圆偏振的现象负责,这是对 OH 观测结果的 又一个解释。这一过程将包含两个微波与一个电子回旋波之间的耦合。在磁等离子体中,通过非 线性效应,高频微波下变频到低频微波和电子回旋波去。初看起来这个理论很吸引人,但后来查明这个效应在天体微波激射中是太微弱了[38]。

参 考 文 献

- [1] Zuckerman, B. et al., Ap. J., 177 (1972), 59.
- [2] Davies, R. D., Galactic Radio Astronomy, 275 (1974).
- [3] Warterlort, J. G. A. et al., A. Ap., 81 (1980), Lll.
- [4] Hansen, S. S., Ap. J., 260 (1982), 599.
- [5] Lo, K. Y. et al., Ap. J., 202 (1975), 650.
- [6] Hansen, S. S. et al., Ap. J. Letters, 208 (1975), L 65.
- [7] Reid, M. J. et al., Ap. J. Letters, 227 (1979), L 89.
- [8] Knowles, S. H. et al., Ap. J. Letters, 180 (1973), L 117.
- [9] Moran, M. J. et al., Ap. J. Letters, 224 (1978), L 67.
- [10] Palmer, P. and Zuckerman, B., Ap. J., 148 (1967), 727.
- [11] Sullivan, T. and Kersthelt, J. H., A. Ap., 51 (1976), 427.
- [12] Lo, K. Y. and Bechis, K. P., Ap. J., Letters, 190 (1974), L 125.
- [13] Cook, A. H., MNRAS., 171 (1975), 601.
- [14] Dickinson, D. F. et al., Ap. J., 180 (1973), 831.
- [15] Bologna, J. M. et al., Ap. J., 199 (1975), 81.
- [16] Knowles, S. H. and Batchelor, R. A., MNRAS., 184 (1978), 107.
- [17] Troland, T. H. et al., Ap. J., 212 (1979), 143.
- [18] Moran, J. M. et al., 1977, Ap. J., 217, 434.
- [19] Clark, F. O. et al., Ap. J., 261 (1982), 569.
- [20] Townes, C. H. and Schawlow, A. L., Microwave Spectroscopy, McGraw-Hill, London (1956).
- [21] Radford, H. E., Phys. Rev., 122 (1961), 144.
- [22] 天体微波激射, A. H. 库克著, 周震浦、吴洪敖译, 科学出版社, (1984).
- [23] Goldreich, P. et al., Ap. J., 179 (1973), 111.
- [24] Elizur, M., Rev. Mod. Phys., 54 (1982), 1225.
- [25] Cook, A. H., Nature, 211 (1966), 503.
- [26] Shklovskii, I. S., Sov. Astro. A. J., 13 (1969), 1.
- [27] Burdyuzha, V. V. and Varshalovich, D. A., Sov. Astro. A. J., 16 (1973), 597.
- [28] Varshalovich, D. A. and Burdyuzha, V. V., Sov. Astro. A. J., 19 (1976), 702.
- [29] Johnston, I. D., Ap. J., 150 (1967), 33.
- [30] Goldreich, P. and Keeley, D. A., Ap. J., 174 (1972), 517.
- [31] Manchester, R. N. et al., Australian J. Phys., 23 (1970), 751.
- [32] Robinson, R. J. et al., Australian J. Phys., 23 (1970), 363.
- [33] Heer, C. V., Phys. Rev. Letters, 17 (1966), 774.
- [34] Heer, C. V. and Settles, J., J. Mol. Spectrosc., 23 (1967), 448.
- [35] Bender, P. L., Phys. Rev. Letters, 18 (1967), 562.
- [36] Litvak, M. M., Phys. Rev., A2 (1970), 2107.
- [37] Litvak, M. M., Phys. Rev., A2 (1970), 937.

- [38] Goldreich, P. and Kwan, J. Y., Ap. J., 176 (1972), 345.
- [39] Litvak, M. M., Ann. Rev. A. Ap., 12 (1974), 97.
- [40] Goldreich, P. et al., Ap. J., 182 (1973), 55.
- [41] Sullivan, W. T., Ap. J. Suppl., 25 (1973), 393.
- [42] Goldreich, P. and Kylafis, N. D., Ap. J. Letters, 243 (1981), L75.
- [43] Goldreich, P. and Kylafis, N. D., Ap. J., 253 (1982), 606.

(责任编辑 刘金铭)

The Polarization Emission from Cosmic Maser Sources

Zhou Zhenpu

(Purple Mountain Observatory, Academia Sinica)

Abstract

The important conclusions about the polarization emission from cosmic maser sources are reviewed, which cover both observation results and theory study in this field.